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1 Introduction

Venture Capital (VC) has long been a critical source of financing for high-growth startups,

particularly in information technology and software. However, recent research suggests that

VC funding is becoming increasingly concentrated in a narrow set of innovations (Lerner and

Nanda, 2020; Gompers, Gornall, Kaplan, and Strebulaev, 2020). This trend raises concerns

about the allocation of capital in an era marked by rapid technological progress, where

breakthrough scientific discoveries require substantial funding to commercialize effectively.

A key friction in the financing of deep-tech ventures lies in the knowledge gap between

investors and entrepreneurs. While traditional VCs are typically trained in business or fi-

nance, evaluating deep technologies often requires domain-specific expertise. Investors with-

out sufficient technical literacy may underestimate or misinterpret the commercial potential

of scientific innovations, leading to systematic underinvestment. Alternatively, they may

misallocate capital to superficially impressive but technically flawed ventures, especially in

sectors where technological validation is difficult for outsiders to assess. This knowledge

asymmetry raises questions about the efficiency of capital allocation in frontier innovation

markets.

In this paper, we argue that technology literacy within VC firms is a critical determinant

of funding deep-tech startups. We begin by documenting three novel empirical facts and

then develop a structural model to explain these patterns. First, we show that the supply

of tech-literate VCs is limited, resulting in a structurally tight market for deep-tech capital.

Using a new dataset that links VC investment records from PitchBook with workforce and

job posting data from Revelio Labs, we find that the proportion of VC firm partners with

PhD-level training—a proxy for technology literacy—is both low and declining. This limited

supply of tech-literate investors creates a funding bottleneck. The tightness is not uniform:

it varies significantly across geographies. While California, for example, accounts for 26%

of all deep-tech startups in the United States, only 10% of VC firms operating in the state

have at least one PhD-trained partner. This geographic asymmetry in supply and demand
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introduces substantial frictions in the matching process between startups and suitable capital

providers, leading to spatially heterogeneous funding outcomes for innovation.

We next examine the role of investor technology literacy in investment choices. Using a

matched sample of realized and counterfactual VC-startup pairs, we find that VC firms with

higher PhD partner ratios are significantly more likely to invest in deep-tech startups. A 10%

increase in the PhD partner ratio increases the likelihood of investment in a deep-tech firm

by 3.2%, relative to a baseline investment probability of approximately 2%. These results

suggest that more tech-literate VCs are more willing to invest in deep-tech ventures.

The final empirical finding tests the consequences of these investments. Deep-tech star-

tups backed by more technologically literate VCs experience better performance outcomes.

Specifically, we find that a 10% increase in the PhD partner ratio reduces the failure rate

of deep-tech startups by 10.6% and increases the IPO probability by 16.7%. The evidence

implies that investor expertise is not merely correlated with investment selection but also

contributes to the long-run success of funded ventures. Tech-literate VCs may have better

screening ability, provide more valuable guidance, better strategic oversight, or access to

technical networks that facilitate commercialization and exit.

To interpret these findings and assess their implications for capital allocation efficiency,

we develop a dynamic structural model of VC–startup matching under directed search and

market frictions, following the canonical framework of Gourio and Rudanko (2014). VC firms

are heterogeneous in productivity and employ two types of labor: general staff to process

investment deals, and technical specialists—modeled as PhD-trained partners—who search

for and evaluate deep-tech startups. Hiring these specialists is costly and subject to convex

adjustment costs, reflecting both labor market frictions and the limited supply of highly

skilled technical talent.

Each period, VC firms compete to match with startups and generate revenue from suc-

cessful investments. Their operations are constrained along two primary dimensions. First,

the supply side of capital—defined as a VC firm’s capacity to make investments—is deter-
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mined by an exogenous productivity shock and the firm’s employment of regular workers who

process deals. Second, the demand side for capital is limited by the number of deep-tech

startups actively seeking funding. Investment relationships are formed through a frictional

matching process, in which the probability of matching depends on market tightness, which

refers to the imbalance between the number of deep-tech startups seeking funding and the

availability of tech-literate VC firms.

We quantitatively solve the model for steady-state equilibrium and calibrate it to match

key empirical moments computed from the empirical sample. Specifically, the calibration

targets include the average and standard deviation of VC profitability, the internal rate of

return (IRR), the average growth rate of capital investment, the ratio of new investment to

existing capital, the average ratio of PhD-trained partners to the number of startups, and

the average share of wage expenditures allocated to PhD partners relative to total labor

costs.

In the model, VCs with higher productivity levels find it optimal to invest more heavily

in hiring PhD partners and screening for deep-tech opportunities. The model predicts that

these firms will exhibit higher investment intensity and better performance, consistent with

our empirical results. Moreover, the model implies that when market tightness is high (i.e.,

when the number of deep-tech startups relative to VC Ph.D. partners is larger), investors

obtain higher returns due to improved bargaining power.

This research contributes to three key streams of literature. First, it adds to the body of

work on financing innovation by highlighting how human capital constraints among investors

shape the flow of capital to innovations. Prior studies highlight the role of staged financing

and experimentation in supporting innovative ventures (Kerr and Nanda, 2015). While some

evidence suggests that, in the context of grant funding, evaluators may penalize proposals

that align too closely with their own expertise or exhibit high levels of novelty (Boudreau,

Guinan, Lakhani, and Riedl, 2016), our findings indicate that this pattern does not extend

to the venture capital setting. Instead, we show that technology literacy among VC investors
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enhances capital allocation to deep-tech startups, highlighting the importance of technology

literacy in VC investments.

Second, our paper speaks to the literature on matching in the VC industry. Existing

research has employed static matching models (Sørensen, 2007) and search-and-matching

frameworks (Ewens, Gorbenko, and Korteweg, 2022) to characterize VC investment dynam-

ics. We extend this literature by incorporating the hiring costs faced by VC firms, which

influence the matching outcomes between investors and startups. This paper provides new

insights into how hiring frictions impact investment decisions, particularly in deep-tech sec-

tors where both specialized expertise and recruitment challenges play a critical role in the

allocation of capital. This paper is also among the first to incorporate a dynamic hetero-

geneous firm framework with a directed search model from labor economics into the VC

literature.

Third, our paper contributes to the literature on VC investment decisions. Existing

empirical research examines how VC teams operate and make investment decisions (Gom-

pers et al., 2020), while theoretical work explores the rationale behind the champion voting

rule employed by investment committees in early-stage VC investments (Malenko, Nanda,

Rhodes-Kropf, and Sundaresan, 2024). Our study extends this literature by demonstrating

how technology literacy among VCs influences investment decisions and improves capital

allocation efficiency.

Our findings have important implications for policymakers, investors, and startup

founders. For policymakers, policies that incentivize PhD holders to transition into VC

careers or promote industry-academic partnerships could help bridge the funding gap for

deep-tech startups. For VC firms, hiring more partners with technical backgrounds could

improve investment decisions and increase returns in deep-tech sectors. For deep-tech star-

tups, our findings highlight the importance of securing investors who not only provide capital

but also possess the technical expertise necessary for navigating the challenges of commer-

cializing breakthrough innovations.
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The rest of this paper is organized as follows. Section 2 provides an overview of the

evolving role of technology literacy in VC investments. Section 3 describes the data sources

and key measures used in our analysis. Section 4 presents the stylized facts. Section 5

introduces a dynamic matching model. Section 8 concludes.

2 Investment in Technology

The financing of innovation and technology entrepreneurship has been a central theme of

the VC industry since its inception (Nicholas, 2019). Historically, early VC firms often had

strong technical backgrounds, particularly in engineering and the sciences, enabling them to

assess and commercialize frontier technologies emerging from government-funded research

and universities.1 These early-stage investments were characterized by high technical risk,

as they often involved nascent technologies with uncertain commercial viability. However,

as noted by Thomas J. Perkins, co-founder of Kleiner Perkins, in what became known as

”Perkins’s Law”: Market risk is inversely proportional to technical risk. This suggests that

firms capable of overcoming significant technical challenges face less competitive pressure,

as the complexity of their innovations serves as a natural barrier to entry.

Despite this early emphasis on deep technological innovation, the contemporary VC land-

scape has shifted towards a greater focus on software and pharmaceutical investments. While

software startups still require technical expertise, their business models prioritize rapid it-

eration, agile development, and sales-driven expansion (Lerner and Nanda, 2020). The cap-

ital efficiency of software firms due to the ”spray and pray” approach (Ewens, Nanda, and

Rhodes-Kropf, 2018), combined with their ability to scale quickly with minimal fixed costs,

makes them particularly attractive to investors seeking high-growth opportunities with rela-

tively low upfront capital requirements. On the other hand, pharmaceutical ventures, despite

being highly R&D-intensive, follow a well-defined regulatory and clinical trial pathway. The
1For example, the early investments made by Fairchild-spinout VC firms played a crucial role in translating

semiconductor research into commercial applications.
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structured nature of drug development, coupled with an established acquisition market where

large pharmaceutical firms actively acquire successful biotech startups (Cunningham, Ed-

erer, and Ma, 2021), reduces some of the uncertainties associated with investment returns

in this sector.

This transformation in the VC industry aligns with the evolving demographic and pro-

fessional composition of venture investors. In contrast to the early days of venture capital,

when many investors had deep technical expertise, today’s VC professionals are more likely

to come from backgrounds in business administration (MBA) or finance. Consequently, in-

vestors with limited technology literacy increasingly rely on advisory committees, technical

consultants, and limited partners (LPs) with specialized domain expertise to guide their

investment decisions. While these experts provide valuable technical insights, they do not

hold decision-making authority. Instead, general partners (GPs), who typically come from

business or finance backgrounds, make the final investment decisions, prioritizing commercial

viability, market scalability, and exit potential over purely technological advancements. How-

ever, despite expert advice, GPs with limited technical expertise often struggle to accurately

assess and value startups in highly sophisticated fields, such as quantum computing.

Although startups developing new deep technologies have the potential to generate sig-

nificant value for investors and the broader market, the decline in technology literacy among

VCs presents a critical challenge: the risk of underinvesting in groundbreaking innovations.

During the screening process, VCs without deep technical expertise often face difficulties in

evaluating the technological potential, scalability, and risks. Without the necessary exper-

tise, the misjudgment can lead investors to favor more familiar business models with clearer

pathways to profitability.

Beyond the initial investment decision, technology-literate VCs play a crucial role in the

long-term success of deep-tech startups. Their understanding of technologies allows them to

provide more practical advice on translating innovation into viable business models. These

VCs contribute not only capital but also valuable insights, adding value to the startups after
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investments.

In the following section, we present empirical evidence that VCs with higher levels of

technology literacy are more inclined to invest in deep-tech startups. Moreover, we demon-

strate that startups invested by these investors exhibit better performance in terms of exit

outcome, reinforcing the importance of technological expertise in venture capital markets.

3 Data and Measures

3.1 Data

Startup and Investment Data We construct our dataset using PitchBook, a leading

database on venture capital transactions that provides detailed information on financing

rounds, investor characteristics, and firm performance metrics. It is owned by MorningStar,

and has a growing prevalence in venture capital research studies as it has better data cov-

erage of startup financing deals than other data sources. Our sample includes all U.S.-

headquartered firms founded between 2000 and 20232, and then we retrieve all financing

rounds associated with these firms. Since venture capital investors frequently syndicate

deals, each round may involve multiple investors. To ensure our analysis focuses on venture-

backed transactions, we restrict our sample to deals where at least one investor belongs to the

categories of Accelerator/Incubator, Venture Capital, Angel Group, or Angel (individual).

Revelio Labs Data We obtain employer-employee matched data from Revelio Labs, which

is underlied by LinkedIn data. Revelio Labs is a workforce intelligence platform that tracks

over 1.1 billion of individuals’ career trajectories, including educational background and

professional networks. This dataset enables us to measure the presence of technology-literate

partners within VC firms and their engagement with deep-tech startups. Our data consists

of the universe of LinkedIn users, their CVs, and their employer profile pages up to July
2PitchBook data as of February 2025.
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2024.

We also obtain job posting data from Revelio Labs, which compiles a comprehensive

dataset of over 2 billion job postings from 5.25 million companies. This data is sourced

directly from 270,000 employer websites, major job boards, and leading staffing firm plat-

forms. To ensure accuracy, Revelio Labs employs a deduplication algorithm that removes

duplicate postings appearing across multiple job boards. A key advantage of this dataset

is its rich level of detail, capturing information such as required skills, education levels, job

responsibilities, and employer attributes. For our analysis, we focus on job postings located

in the United States, ensuring that each entry has a non-missing employer identifier and a

complete job description.

Linking Pitchbook and Revelio Labs We merge individual profile data from Revelio

Labs with PitchBook using company information. The merging process is conducted se-

quentially, prioritizing company ticker numbers, company website URLs, LinkedIn URLs,

and exact company name matches. Additionally, we integrate the job posting data from

Revelio Labs using a unique company identifier assigned by Revelio Labs.

After merging, 82% of U.S. startups in PitchBook are linked to Revelio Labs data, and

52% of these startups have at least one job posting merged. To ensure data relevance, we

restrict our sample to VC firms where at least one partner has data available in the Revelio

individual profile dataset and to startups that have at least one recorded job posting.

One potential limitation of restricting the analysis to firms with job postings is the

substantial reduction in sample size, as nearly half of the firms are excluded. To assess

potential selection bias, we conduct a balance test comparing firms with and without job

postings, as reported in Table A.1. The composition of the founding team and the year of

establishment are largely similar across the two groups. However, firms with job postings

tend to have raised significantly more capital, which aligns with the expectation that startups

typically begin hiring following a round of financing. By focusing on firms that have posted
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job openings, our sample captures firms that are relatively more successful, as they are

actively expanding their workforce and advancing their business operations. As a result, our

analysis primarily applies to more mature startups.

3.2 Key Measures

Technology Literacy Our VC-year level technology literacy measure is constructed based

on the partner education composition of venture capital firms. A partner is defined broadly

to include any individual with a job title containing “partner”, “founder”, “angel”, “owner”,

“advisory board member”, or “executive”.

We begin by identifying the highest level of education attained by each VC partner

and determining whether they hold a PhD degree. Next, we link VC partners to their

employment histories, recording their start and end dates at each firm. We then aggregate

the total number of partners and the number of partners with a PhD at the VC firm-year

level. If a partner exits the VC firm, they are excluded from the calculations following their

departure year. To quantify a VC firm’s technology literacy in a given year, we use the

ratio of partners holding a PhD degree, providing a measure of the firm’s expertise in deep

technology investments.

Deep-Tech Startups A challenge in this research is identifying deep-tech startups. In-

spired by the approach of Babina, Fedyk, He, and Hodson (2024), we leverage job posting

data from Revelio Labs and classify deep-tech startups as companies that require a PhD or

MD (hereafter referred to as PhD) degree for their positions. This serves as a useful proxy

because deep-tech startups typically operate in highly specialized fields such as artificial

intelligence, biotechnology, and quantum computing, where advanced research expertise is

essential. Requiring a PhD in job postings reflects the firm’s need for cutting-edge techni-

cal knowledge, making it a reasonable indicator of deep technology startups. We define a

startup as “isDeepTech” if at least one of its job postings requires a PhD degree. Based on
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this criterion, 16% of the sample is identified as deep-tech startups.

The final sample of analysis includes 27,917 startups, 12,261 investors, and 67,065 deals.

The regression is at the investor-startup-deal level with sample size of 182,405. Table 1

presents the summary statistics for key variables used in the analysis, with the observation

level at the investor-startup-deal level. The majority of VC firms in the deals do not have any

PhD partners, with an average PhD partner ratio of 7.8%, indicating that high technology

literacy is relatively uncommon among VC firms. In the sample, 28.1% of VC deals involve

deep-tech startups are classified as Deep-Tech. 3 Regarding exit performance, 6.15% of

startups in the deal fail or go bankrupt. Meanwhile, 17.17% of startups in the deal exit

through mergers or acquisitions (M&A), and 4.08% successfully go public.

4 Stylized Facts

4.1 Fact 1: Limited supply of tech-literate VCs and geographic

variation in market tightness in deep-tech funding

We begin our empirical analysis by documenting the structural tightness in the market for

deep-tech capital. The number of tech-literate investors remains limited and has declined

over time. This persistent scarcity contributes to market tightness, which refers to the

imbalance between the demand for funding from deep-tech startups and the supply of tech-

literate VC firms. Moreover, the shortage is not evenly distributed across regions, resulting

in substantial geographic variation in access to tech-literate venture capital.

The summary statistics in Table 1 highlight the low ratio of PhD partners in VC firms.

Figure 1 further supports this observation. The green line represents the industry-wide share

of PhD partners among all VC partners, while the blue line shows the average PhD ratio at

the firm level. Both lines show a similar trend: The share of PhD partners has a noticeable
3At the startup level, 16% of firms are classified as deep-tech, whereas at the VC-deal level, 28.1% of

deals involve deep-tech startups.
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decline since 2010, indicating an increasing scarcity of PhD partners in the industry. This

downward trend suggests that, despite the growing importance of deep-tech investments,

the supply of VCs with strong technical backgrounds is not keeping pace with industry

needs. As a result, deep-tech startups may face challenges in securing investment from tech-

literate VCs who can provide not only capital but also the strategic guidance necessary for

commercializing complex technologies.

The low ratio of PhD partners suggests that hiring PhD-trained professionals in the VC

industry can be costly and challenging. First, junior positions in VC firms are predominantly

occupied by individuals with backgrounds in finance and management. As a result, fewer

PhD-trained professionals enter the industry at early career stages, limiting the pipeline of

candidates who can advance to partner positions. Table A.2 provides insights into the edu-

cational background of individuals working in the VC industry, along with the proportion of

PhD holders in each major field. The majority of VC professionals hold degrees in Business,

yet only 0.78% of them have a PhD. While Biology exhibits the highest PhD ratio, it rep-

resents only a small fraction of the overall VC workforce, further underscoring the limited

presence of PhD-trained professionals in the industry.

Second, lateral hiring from other VC firms is constrained by the already low supply of

PhD partners. Table A.3 reports the major fields of study for VC partners, categorized by

their highest degree obtained. The data show that most VC partners hold Bachelor’s or

Master’s degrees, with fewer than 200 partners holding a PhD in each field. This scarcity of

PhD-trained partners makes it difficult for firms to recruit from competitors or expand their

tech-literate leadership through external hiring.

Beyond the scarce supply of tech-literate investors, the geographic distribution of deep-

tech startups and PhD-backed investors further contributes to the variation in market tight-

ness between deep-tech firms and tech-literate VCs. Table 2 presents the proportion of

deep-tech startups and the share of VC firms with at least one PhD partner across states

with the highest number of deep-tech startups. As shown in the table, while California has
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highest number of deep-tech startups and the second-highest share of deep-tech startups

at 26%, the proportion of investors with a PhD is among the lowest, at only 10%. This

imbalance suggests that deep-tech startups in California may face greater challenges in se-

curing funding from tech-literate investors compared to those in Massachusetts and New

York, where the concentration of PhD-backed VCs is higher.

Figure 2 further illustrates this geographic misalignment by mapping the ratio of deep-

tech startups and the proportion of VCs with PhD partners across different states. The figure

reinforces the finding that the distribution of deep-tech startups does not fully align with

the availability of tech-literate VCs. While California has a relatively high concentration of

deep-tech startups, it does not exhibit a correspondingly high proportion of VCs with PhD

partners, suggesting a potential funding gap for research-intensive startups in the region.

These findings highlight the presence of market heterogeneity in the barriers to hiring

PhD partners within VC firms, as well as the challenges deep-tech startups face in accessing

funding from investors with strong technical expertise. The geographic imbalance suggests

that certain regions may experience greater friction in matching deep-tech firms with suitable

investors, potentially limiting their growth and commercialization prospects.

4.2 Fact 2: Tech-literate VCs are more likely to back deep-tech

startups

We next examine whether VCs with higher technology literacy are more likely to invest in

deep-tech startups. However, the Pitchbook deal data only captures VC-startup pairs where

VC firms have made actual investments. To test the effect of alumni ties on investment

decisions, the sample should include both actual deals and counterfactual pairs—startups

that VCs could have considered but chose not to invest in.

Following the methods in Gompers, Mukharlyamov, and Xuan (2016) and Hegde and

Tumlinson (2014), we construct plausible counterfactual pairs by identifying, for each year t,

a set of VC firms actively making investments and a set of startups actively seeking funding.
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A VC firm is considered active if it participates in at least one deal in year t. We assume

that startups actively seeking funding will either raise funds in a deal or face bankruptcy if

they fail to raise capital. Thus, a startup is classified as active if it successfully raises funding

or goes bankrupt in year t.

After constructing the active pools, we match VCs with startups based on VCs’ invest-

ment preferences, considering location (state), industry, and startup development stage (seed

rounds, early VC rounds, and late VC rounds). This approach ensures that counterfactual

pairs reflect realistic investment opportunities that VCs might have evaluated. Based on

this method, 272,323 actual investor-deals generate a total of 13,638,587 VC-startup pairs,

including both realized investments and plausible counterfactual opportunities.

The regression specification is

Investijt = β1(PhD Ratiojt × isDeepTechi) + β2PhD Ratiojt + ηi + ηj + ηt + ϵijt (1)

where the dependent variable Investijt represents the investment decision of VC j in

startup i in year t. The term PhD Ratiojt denotes the ratio of PhD partners in VC firm j,

and isDeepTechi indicates whether startup i is classified as deep-tech.

The key independent variable of interest, (PhD Ratiojt × isDeepTechi), captures how a

higher ratio of PhD partners in a VC firm influences the likelihood of investing in deep-

tech startups relative to non-deep-tech startups. The specification includes investor fixed

effects (ηj), startup fixed effects (ηi), and year fixed effects (ηt), controlling for time-invariant

differences across investors and startups, as well as broader market trends. The standard

errors are clustered at VC level.

Table 3 presents the regression results, providing evidence of a positive relationship be-

tween the ratio of PhD-holding partners within a VC firm and the likelihood of investing in

deep-tech startups. In Column 1, the coefficient of the interaction term is 0.64, indicating

that a 10-percentage-point increase in a VC firm’s PhD partner ratio raises the probability
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of investing in a deep-tech startup by 0.064 percentage points. Relative to the average in-

vestment probability of 2.0% in the total matching sample, this represents a 3.2% increase.

Besides, the coefficient of the PhD Ratio variable captures the effect on non-deep-tech star-

tups, suggesting that VCs with a higher ratio of PhD partners tend to invest slightly less in

non-deep-tech startups, though the effect is not statistically significant.

Recognizing the possibility that time-varying shocks could simultaneously influence both

the hiring of PhD partners and investment strategies, Column 2 introduces VC-Year fixed

effects to account for these confounding factors. Column 3 further controls for time-varying

variations in investment patterns by adding VC-Year-State-Industry fixed effects. The re-

sults across all specifications remain consistent, reinforcing the finding that VCs with higher

technology literacy allocate more of their capital toward deep-tech ventures.

4.3 Fact 3: Deep-tech startups backed by tech-literate VCs per-

form better

The previous findings suggest that VCs with a higher ratio of PhD partners are more likely

to invest in deep-tech startups. In this section, we examine whether these tech-literate VCs

make more successful investments in deep-tech startups. Specifically, we analyze whether a

higher proportion of PhD partners within a VC firm leads to better performance outcomes for

deep-tech startups. To assess this relationship, we restrict our sample to actual investment

deals and estimate the following regression:

Performanceijt = β1isDeepTechi + β2(PhD Ratiojt × isDeepTechi) + γXit + ηj,t + ϵijt (2)

where Performanceijt represents the exit outcome of startup i that received investment

from VC j in year t. The set of performance outcomes includes whether the startup ulti-

mately fails, gets acquired, or goes IPO. isDeepTechi is an indicator for whether the startup

has any job posting to recruit PhDs, and an interaction term (isDeepTechi × PhD Ratiojt).
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The control variables in Xit include a dummy variable for whether the startup founder has a

PhD, the type of deals, the startup’s founding year, and its primary industry classification.

The specification also incorporates investor-year fixed effects, ηj,t, to control for unobserved

time-varying investor characteristics. Similar to the investment decision analysis, the key co-

efficient of interest, β2, evaluates whether VCs with a higher ratio of PhD partners generate

better investment outcomes for deep-tech startups compared to non-deep-tech startups.

Table 4 presents the results on startup performance. Column (1) examines the effect of

VC technology literacy on the probability of startup failure. The coefficient on the inter-

action term suggests that a VC firm with a 10-percentage-point higher PhD partner ratio

reduces the failure rate of deep-tech startups by 0.34 percentage points compared to non-

deep-tech startups. Given the average failure rate of 3.2% in the sample, this represents a

relative reduction of 10.6%, indicating that deep-tech startups backed by more technologi-

cally proficient VCs are more likely to survive.

Column (2) tests the effects on mergers and acquisitions (M&A). The coefficient on the

interaction term is slightly negative but not statistically significant. This may be due to

the fact that mergers and acquisitions (M&A) do not always constitute a successful exit,

as acquiring firms may purchase shares at a discounted valuation relative to prior funding

rounds.

IPOs are generally considered a more favorable exit for VC firms, as the share price at

IPO is typically higher than in previous funding rounds. Column (3) examines the effect

on the probability of an IPO. The results suggest that a VC firm with a 10-percentage-

point higher PhD partner ratio increases the likelihood of a deep-tech startup going public

by 0.73 percentage points relative to non-deep-tech startups. Given the average IPO rate

of 4.37% in the sample, this represents a relative increase of 16.7%, reinforcing the idea

that VCs with greater technology expertise may enhance the growth trajectory of deep-tech

startups and facilitate their access to public markets. Column (4) combines the outcomes

from Columns (2) and (3), using a dependent variable that indicates whether the startup
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exits through either an M&A or an IPO. The results align closely with those in Column (3),

further supporting the notion that technologically proficient VCs improve exit prospects,

particularly through IPOs.

Additionally, the coefficient on the variable isDeepTech captures the performance dif-

ference between deep-tech and non-deep-tech firms when invested in by VCs without PhD

partners. The results indicate that deep-tech startups exhibit lower failure rates, lower M&A

rates, and higher IPO rates, suggesting that they generally perform better than their non-

deep-tech counterparts. Overall, these findings suggest that deep-tech startups backed by

VCs with greater technology literacy are more likely to achieve successful exits through IPOs

and less likely to fail. This can be explained by the hypothesis that VCs with higher tech-

nology literacy are better at identifying promising deep-tech startups, and also provide more

effective guidance, ultimately adding value to their portfolio companies.

5 Model

Section 4 shows that tech-literate VCs are more likely to invest in deep-tech startups, improve

their success rates, and remain scarce, with a geographic variation in market tightness in

deep-tech funding. Based on these findings, we develop a dynamic general equilibrium model

to explain how constraints in VC firms’ technology literacy shape investment patterns and

deep-tech financing.

In this model, VC firms and startups meet in a market with search and matching frictions.

The friction generates long-term relationships between VC firms and startups. Time is

discrete and infinite.
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5.1 VC firms

5.1.1 Productivity and Revenue

VC firms need to hire routine workers lj,t to process deals with startups in which they invest,

and zj,t is an idiosyncratic productivity shock that follows a log-AR(1) process,

logzj,t+1 = z̄ + ρzlogzj,t + ϵj,t+1 (3)

where ϵj,t+1 ∼ N(0,σ2).

The gross revenue of VC firms depends not only on the total size of deals they can handle,

but also on the number of startups they match. Therefore, VC firms’ revenue yj,t is jointly

determined by the demand and supply of capital:

yj,t ≤ zj,tlj,t

yj,t ≤ mj,t +Mj,t

(4)

where mj,t are the existing deep tech startups invested by the VC j’ and Mj,t is the new

deep tech startups matched in a frictional search and matching market in year t.4

5.1.2 Frictional VC-Startups Investment Market

Investments in deep-tech startups generate better performance (or higher return) but VC

firms need to hire specialists (proxy by partners with PhD degree) to identify new deep-

tech startups. Specialists are placed in separate local VC-startup markets and generate s

efficiency units of specialists. Hiring specialists is costly, which is captured by an increasing

and convex cost function κ(s).

The measure Lb household members serve as startups CEO and the market frictions

imply that they must meet with the specialists to get the VC deals. Here we assume that
4Or equivalently, the ratio of deep-tech startups to all non-deep-tech startups. Here we normalize the

total number of non-deep-tech startups to 1.
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the startups CEO decide on the local VC-startup markets to visit independently and that

specialists have finite capacity to screen the startups.

Meetings between specialists and potential startups CEO are thus subject to coordination

frictions in the search market; each period some local markets go without any startups CEO

arriving, while others get more than the specialists can handle. This friction is captured

by a VC-level direct search matching function. When s efficiency units of specialists meet

with b units of startups CEO, they create VC’s new startups investment (a measure of new

investment relationships):

M(bj,t,sj,t) = ξ
(
bγmj,t s

1−γm
j,t

)ν
(5)

where ξ > 0 measures the average matching efficiency, γm ∈ (0,1) measures the matching

function elasticity and ν > 0 governs the return to scale of this matching technology.5

We use θ = b/s to denote the VC-specific average queue length of potential startups’

CEO across a VC’s specialists. The probability of matching per specialist, M(b,s)
s

= η(θ,s) =

ξθγmνsν−1, is an increasing function of the queue length. Similarly, the probability of match-

ing per startup, M(b,s)
b

= µ(θ,s) = ξθγmν−1sν−1, is a decreasing function of the queue length.6

To capture the fact that startups may exit from the VC’s portfolio, we assume that the

existing relationships end with probability δn each period. Therefore, the size of startups

each VC invests, which is a type of customer capital, follows:

mj,t+1 = (1− δn)(mj,t +M(bj,t,sj,t)) (6)

We assume that VC firms can commit to an upfront cost ςj,t, which they use to screen

for new profitable startups. In equilibrium, different firms have different upfront costs,

depending on their desire to expand startups investment.7

5This measure is a product of the exogenous probability of a meeting leading to a new investment
relationship, and the measure of meetings taking place.

6η(θ,s) = µ(θ,s)θ. These expressions capture the idea that an increase in potential startups per specialist
increases matches per specialist but at a diminishing rate, because these startup CEOs are more likely to
arrive in local markets with specialists occupied.

7In practice, we assume that the size of startups depreciation rate is large enough to guarantee that the
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5.2 VC’s Recursive Optimization Problem

It follows that the VC’s net profit can be written as

ej,t = yj,t − sj,tη(θ,s)ςj,t − wtlp,j,t − wt
κ

2s
2
j,t ≥ 0 (7)

where κ
2s

2
j,t functions as the adjustment cost of recruiting specialists. The original value of

the VC’s equity, v(z,m), depends on two state variables S = (z,m), which are productivity

and the size of startups.

Every period, a VC firm chooses the number of specialists sj,t to recruit, the amount of

upfront costs ςj,t it sacrifices to identify new profitable startups, and output yj,t it produces

to maximize its recursive value function:

vt(z,m) =maxy,s,ς e+ βEν
tvt+1(z′,m′)

e =y − sη(θ, s)ς − wtlp − wt
κ

2s
2

yj,t ≤ zj,tlj,t

yj,t ≤ mj,t +Mj,t

m′ =(1− δn)(m+ sη(θ,s))

log(z′) =ρzlog(z) + ϵz

(8)

with µ(θ, s)ς = wt, which indicates that startup owners can be indifferent between low

upfront-cost VCs and high upfront-cost VCs, if queues in high upfront-cost VCs are suffi-

ciently shorter than in low upfront-cost VCs. All choice variables are non-negative.

Proposition 2: The optimal conditions of VC imply

1. θ = γm
1−γm

κs

2. ς = w
ξ

(
1−γm
γmκ

)1−ν
θ2−ν−γmν

VC keeps hiring some specialists each period, even when a low productivity realization causes it to contract
overall.
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5.3 Household Sector

There is a unit measure continuum of identical households with preferences over consumption

Ct and total labor supply—comprising market work Lm
t for VC firms and funding search as

startup owners Lb
t in the VC-startup market—whose expected utility is given by

∞∑
t=0

βtu(Ct, L
b
t + Lm

t ),

subject to the budget constraint

Ct +
Brf

t+1
1 + rt

≤ wt(Lb
t + Lm

t ) +Brf
t + Tt, (9)

where β is the discount factor of households, rt is the risk-free rate, wt is the wage rate, Brf
t

is one-period risk-free debt, and Tt is transfers from all firms, including nominal profits.

In each period, households allocate one unit of time between market work and funding

search activities. This allocation determines the real wage via the following optimality

condition:

wt = −Ul(Ct, L
b
t + Lm

t )
Uc(Ct, Lb

t + Lm
t )

. (10)

Households’ decisions over consumption and risk-free bond holdings determine the risk-

free rate.

5.4 Model Equilibrium

Given equilibrium prices w and r, a stationary competitive search equilibrium specifies

VC decision rules y(S;w,r), s(S;w,r), l(S;w,r), ς(S;w,r), e(S;w,r) and their value function

v(S;w,r) such that (1) VCs’ decision rules and their value function solve their problems; (2)

regular worker satisfies µ(θ, s)ς = w and θ > 0; (3) all markets clear:

Consumption goods market clears. The total consumption should equal total revenue
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in the economy:

Ct = Et =
∫

etdφ(S). (11)

Matching consistency. In the competitive search market, the total number of startup

owners should be equal to the total number of matched Ph.D. partners.

Lb =
∫
sθdφ(S). (12)

Labor market clears. The aggregate demand of labor that includes regular worker and

Ph.D. partners should equal the total supply of labor doing market work Lm, and we exoge-

nously set the total labor supply Lm + Lb in this economy to 1:8

Ld =
∫ (

κ

2s
2 + l

)
dφ(S) = Lm. (13)

Zero-net supply of the risk-free bond. The aggregate demand for the risk-free bond

must equal its supply, which is normalized to zero.

6 Quantitative Analysis

We study the model solution and perform quantitative analysis by means of calibration and

simulation. We start with an explanation of annual calibration and simulation, followed

by a discussion on the model mechanisms and policy function. We solve for steady-state

equilibrium via value function iteration. To compare our model with the data, we simulate

a panel of 5,000 firms and 50 years for 10 times, and compute the cross-sample average of

the target moments.
8Lm + Lb =

∫ (
κ
2 s

2 + l + sθ
)
dφ(S) = 0.6.
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6.1 Model Calibration

The calibration is summarized in Table 5. We take parameter values reported in the literature

whenever possible and choose the rest of them to match the data moments from the empirical

sample. The parameters can be divided into three groups that affect the supply of Ph.D.

partners, demand, and supply of capital.

The supply of capital from VC depends on an exogenous productivity process which

affects VC’s valuation and earnings. We calibrate the parameters that govern capital supply:

ρ = 0.85, σ = 0.15 to match the average earnings per capital and the correlation of VC

earnings.

The demand for capital from deep-tech startups is sticky and requires some effort from

Ph.D. partners to correctly identify deep-tech startups with good potential to invest. This

process incurs sufficient search cost, for example, the regular wages that are spent on hiring

Ph.D. partners, and some upfront cost, such as cost on screening Deep-Tech from non-deep-

tech startups. Every year, some existing deals expire and there are also some new deals that

are issued. As a result, invested capital in Deep-Tech is a state variable that has a law of

motion. We back out the depreciation rate of invested Deep-Tech capital δ = 0.24 from the

average growth rate of total invested Deep-Tech capital and the average ratio of the new

investment to total invested Deep-Tech capital. We calibrate the matching efficiency ξ to

be 0.25 to match the average ratio of new investment to total invested Deep-Tech capital.

For γm, we set it to 0.6 to match the average ratio of the number of Ph.D partners to the

number of Deep-Tech startups invested.

Search friction limits the hiring of Ph.D. partners by increasing the hiring cost measured

by the total wage expense on Ph.D. partners. We calibrate κ to 5 to match the average ratio

of total wage expense in other employees and total wage expense in Ph.D. partners.
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6.2 Model Implication

In this section, we test two model implications. The first one is about the predictability of

labor share of Ph.D. partners to other employees about the VC investment rate, valuation,

and returns. Second, we examine the predictability of market tightness.

6.2.1 Labor Share, Investment, and Valuation

The model mechanism suggests that VC with a higher labor share of Ph.D. partners to other

employees: s/(l + s), predicts a higher investment rate and a higher VC value. We use the

simulation data to estimate the following regression specification:

yi,t+1 = αi +
si,t

si,t + li,t
+ ϵi,t+1 (14)

where yi,t+1 is the VC investment rate defined as the cost of hiring Ph.D. partners (wage

expense) per capital: wκs2

2m , or the ratio of new investment to total capital invested M
m
, or IRR

in percentage. Panel A of Table 6 shows that the coefficient estimates of the labor share are

all positive: more Ph.D. partners lead to more investment in Deep-Tech startups relative to

non-deep-tech startups and therefore earn a higher return.

6.2.2 Heterogeneous Market Tightness

In the model, the tightness of the market is represented by θ = b/s. A higher value of θ

indicates that there is relatively more funding needs from Deep-Tech startups than funding

supply from VCs. In other words, VCs have more bargaining power than start-ups when

structuring deals and negotiating the division of earnings. Therefore, a less tight market

indicated by a higher value of θ predicts more investment and a higher return on VC in-

vestment. Panel B of Table 6 shows the coefficient estimates of the the inverse of market

tightness.
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7 Counterfactual Analysis

How does supply of Ph.D. partners in the labor market and the supply of capital to VCs affect

their investment in Deep-Tech startups and the equilibrium valuation of VC industry? To

answer these questions, in this section, we use the calibrated model to perform counterfactual

analysis.

7.1 Supply of Ph.D. Partners and Aggregate Value

In the baseline model, the aggregate labor supply is exogenously set to 1. In the first set

of counterfactual analysis, we solve for the equilibrium implied aggregate value of VC and

the total investment in Deep-Tech startups relative to non-deep-tech when we change the

values of aggregate labor supply from 0.2 to 1.8. Figure 3 plots the aggregate value and the

aggregate investment in DeepTech relative to non-deep-tech startups against the aggregate

Ph.D. partners in equilibrium. The increasing aggregate value and investment in DeepTech

startups suggest that in equilibrium, more supply of Ph.D. partners relax the market frictions

and therefore boost more investment in DeepTech startups with relatively higher return and

value. In addition, the value increases more rapidly when there are more equilibrium Ph.D.

partners. Specifically, when the aggregate Ph.D. partners increase by 10% from baseline

value (0.23), the aggregate value of VCs increase by around 19% from 2.22 in the baseline

model.

8 Conclusion

This paper investigates the role of technology literacy among VC firms in shaping deep-tech

investment decisions and startup outcomes. Our findings reveal that VCs with a higher

ratio of PhD partners are significantly more likely to invest in deep-tech startups. Moreover,

startups backed by tech-literate VCs exhibit better performance, as measured by lower failure

rates and higher IPO probabilities. These results suggest that technology literacy plays a

24



crucial role in both the selection and success of deep-tech startups, reinforcing the idea that

domain expertise enhances the ability of investors to evaluate, support, and guide research-

intensive ventures.

Despite the advantages of tech-literate investors, our analysis highlights a persistent

scarcity of PhD-trained partners in the VC industry, and identifies a geographic variation in

market tightness in deep-tech startup funding. While deep-tech startups are highly concen-

trated in regions like California, the availability of investors with the technical expertise to

evaluate and support them is disproportionately low. This imbalance suggests that deep-tech

startups in certain regions experience higher funding frictions. To formalize these findings,

we develop a structural model that incorporates search and matching frictions, explaining

why tech-literate VCs are limited and why the investment process in deep-tech startups faces

structural barriers.

Our findings have important implications for policymakers, investors, and entrepreneurs.

Efforts to increase the supply of tech-literate VCs could help bridge the funding gap for

deep-tech startups. For VC firms, hiring PhD-trained partners could improve investment

selection and portfolio outcomes. For deep-tech entrepreneurs, our results emphasize the

importance of seeking investors with technology literacy. Overall, this study provides new

insights into the relationship between investor expertise and deep-tech funding, highlighting

structural frictions in the VC market that warrant further attention in both research and

policy discussions.
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Table 1: Summary Statistics

Variable Count Min Q25 Median Mean Q75 Max SD
PhD Partner Ratio 182,405 0 0 0 0.0758 0.0769 1 0.1675
isDeepTech 182,405 0 0 0 0.3219 1 1 0.4672
Year Founded 182,405 2000 2013 2016 2015.52 2019 2023 4.73
Founders with PhD 182,405 0 0 0 0.198 0 1 0.3982
Closed Startups 182,405 0 0 0 3.20 0 100 17.59
Mergers 182,405 0 0 0 14.93 0 100 35.64
IPOs 182,405 0 0 0 4.37 0 100 20.45
Mergers + IPOs 182,405 0 0 0 17.69 0 100 38.16

Notes: This table reports summary statistics for key variables at investor-startup-deal
level. isDeepTech is a binary variable indicating whether a firm has posted at least one
job listing requiring a PhD. Total Raised represents the cumulative amount of funding
secured by a firm before exit or shutdown. Close is a binary variable equal to 100 if the
firm is categorized as ”Out of Business,” ”Bankruptcy: Liquidation,” or ”Bankruptcy:
Administration/Reorganization,” and 0 otherwise. M&A is a binary variable taking a
value of 100 if the firm exits via a merger or acquisition and 0 otherwise. IPO is a binary
variable equal to 100 if the firm has undergone an initial public offering and 0 otherwise.
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Table 2: Deep-Tech Companies and Investor Ratios by State

State DT Company Count DT Investor Ratio DT Company Ratio
California 1,057 0.10 0.26
New York 301 0.10 0.17
Massachusetts 297 0.23 0.39
Texas 110 0.14 0.17
Washington 72 0.16 0.19
Colorado 68 0.19 0.23
Pennsylvania 59 0.24 0.23
Illinois 55 0.15 0.17
Florida 48 0.13 0.10
Delaware 46 0.11 0.10

Notes: This table reports the number of Deep-Tech (DT) companies by state in
2022, along with the DT Investor Ratio and DT Company Ratio. The DT Investor
Ratio represents the proportion of investors with at least one PhD partner as a
share of the total number of investors who made investments in the state in 2022.
The DT Company Ratio reflects the share of Deep-Tech companies relative to all
startups that received funding in the state in 2022. The data sample is consistent
with our regression analysis dataset, which includes all VC deals on US startups
founded between 2000 and 2023.
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Table 3: Investment Decision

Invest
(1) (2) (3)

PhD.Ratio -0.1218
(0.1608)

PhD.Ratio × isDeepTech 0.6369∗∗∗ 0.6438∗∗∗ 0.5505∗∗∗
(0.1334) (0.1363) (0.0014)

Investor FE Y Y Y
Year FE Y Y Y
Company FE Y Y Y
VC×Year FE Y
VC×Year ×Market FE Y
Observations 13,634,510 13,630,437 13,594,865
R2 0.2173 0.2170 0.1809

Notes: This table estimates the effects of the ratio of PhD-holding
partners on investment choice. The dependent variable is an indi-
cator that equals 1 if the VC invests in the startup and 0 otherwise.
The main variable of interest, isDeepTech×PhDRatio, is the inter-
action between isDeepTech, an indicator that equals 1 if the startup
has job postings requiring a PhD, and PhDRatio, the proportion
of PhD-holding partners within the VC firm. Column (1) includes
investor fixed effects, year fixed effects, and company fixed effects.
Column (2) further adds VC-year fixed effects, while Column (3)
includes VC-year-state-industry fixed effects. Standard errors are
clustered at the VC level. * p < 0.10, ** p < 0.05, ***p < 0.01.
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Table 4: Investment Performance

Close M&A IPO M&A and IPO
(1) (2) (3) (4)

isDeepTech -1.442∗∗∗ -5.349∗∗∗ 5.384∗∗∗ -1.524∗∗∗
(0.1542) (0.3557) (0.3370) (0.3418)

isDeepTech × PhD.Ratio -3.431∗∗∗ -0.2193 8.775∗∗∗ 7.319∗∗∗
(1.140) (1.802) (1.893) (1.918)

Controls Y Y Y Y
VC×Year FE Y Y Y Y
Industry FE Y Y Y Y
Observations 182,405 182,405 182,405 182,405
R2 0.32053 0.41977 0.50404 0.45823

Notes: This table reports the effects of the ratio of PhD-holding partners on
investment performance. VC-year fixed effects and industry fixed effects are
included. Control variables include the startup’s founding year, whether the
startup has a PhD founder, and deal type. The dependent variable in columns
(1), (2), and (3) is a dummy variable indicating startup failure, merger and
acquisition (M&A), and IPO, respectively. The dependent variable in column
(4) is an indicator variable for either M&A or IPO. Standard errors are clustered
at the VC level. * p < 0.10, ** p < 0.05, ***p < 0.01.
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Table 5: Model Calibration

Parameter Value Moments Data Model
ρ 0.85 Earnings Correlation 0.8 0.83
σ 0.15 Earnings/Capital 0.22 0.23
δ 0.24 Average capital growth 0.25 0.24
γm 0.6 # of Ph.D./# of Startups 0.66 0.62
ξ 0.25 Average new investment to existing capital 0.33 0.32
κ 5 Wage expense on other labor

Wage expense on Ph.D. partners 3.7 3.2
β 0.97 Annual risk-free rate 3% 3%

Notes: This table reports the values of calibrated parameters in the model and
the matched moments in the data and model.
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Table 6: Model Implication

Investment Rate Matched Rate IRR (%)
Panel A

Labor Share 0.44 0.59 5.56
Panel B

Market Tightness 0.10 0.12 5.72

Notes: This table presents model implications using simulated data from the
calibrated model. Panel A estimates the predictability of VC labor share, defined
as the ratio of Ph.D. partners to the total of employees, on VC’s investment
rate, new matched investment relationship, and IRR. Panel B estimates the
predictability of the inverse of market tightness, defined as the ratio of Ph.D.
partners to startups, on VCs’ investment and return.
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Figure 1: PhD in the VC Industry
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Notes: This figure plots the ratio of PhD partners in the VC industry. The green line
represents the overall share of PhD partners among all VC partners in the industry. It is
calculated as the total number of PhD partners divided by the total number of partners in
the VC industry for each year. The blue line measures the average ratio of PhD partners at
the firm level, computed as the mean PhD ratio across VC firms in each year. The data is
sourced from PitchBook, and the sample corresponds to the dataset used in our regression
analysis, which includes all VC firms that have participated in at least one deal involving
U.S. startups founded between 2000 and 2023.
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Figure 2: Geographical Distribution of Deep-Tech Startups and Investors

(a) Share of Deep-Tech Startups
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(b) Share of Investors with PhD Partner(s)
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Notes: This table reports the ratio of Deep-Tech (DT) companies along with the DT Investor
Ratio and DT Company Ratio by state across years. The median is used when aggregating
data from the state-year level to the state level. The DT Investor Ratio represents the
proportion of investors with at least one PhD partner as a share of the total number of
investors who made investments in the state that year. The DT Company Ratio reflects
the share of Deep-Tech companies relative to all startups that received funding in the state
during the same period. The data sample is consistent with our regression analysis dataset,
which includes all VC deals involving U.S. startups founded between 2000 and 2023.
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Figure 3: Counterfactual Analysis: Aggregate Effects of Labor Supply
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Notes: This figure plots the aggregate value and the aggregate investment in DeepTech
relative to non-deep-tech startups against the aggregate Ph.D. partners in model equilibrium
when we exogenously vary aggregate labor supply from 0.2 to 1.8.
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A Appendix
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The following tables examine the empirical results using an industry-level deep-tech def-

inition instead of a startup-level classification. To benchmark industries, we calculate the

proportion of firms advertising PhD- or MD-related positions within each of the 41 PitchBook

industries. Three industries—Other Information Technology, Other Consumer Products and

Services, and Other Healthcare—are excluded due to their limited use as primary industry

classifications. All other industries are ranked based on the fraction of deep-tech firms, with

startups operating in industries below the median ratio categorized as “low tech.”

Table A.4 replicates the regressions in Table 3, replacing the variable isDeepTech with

isLowTech. Similarly, Table A.5 follows the regressions in Table 4. The results reinforce

the same conclusion: VCs with a higher proportion of PhD-holding partners invest less in

low-tech industries, and investments in these industries tend to exhibit weaker performance.
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Table A.1: Samples of Firms with and without Job Posting

Variable Mean (without) SD (without) Mean (with) SD (with) Diff
Year Founded 2013.026 6.218 2013.519 6.150 0.493
Close 0.316 0.468 0.077 0.267 -0.239
M&A 0.151 0.358 0.142 0.348 -0.009
IPO 0.011 0.147 0.022 0.146 0.011
Total Raised 15.899 159.327 74.528 542.128 58.629
Founder Count 1.532 0.787 1.701 0.932 0.169
Founder PhD Count 0.228 0.550 0.239 0.609 0.011
Founder PhD Ratio 0.145 0.331 0.136 0.316 -0.009

Notes: This table reports summary statistics for firms without job postings and firms with
job postings. Close is a binary variable equal to 1 if the firm is categorized as ”Out of
Business,” ”Bankruptcy: Liquidation,” or ”Bankruptcy: Administration/Reorganization,”
and 0 otherwise. M&A is a binary variable equal to 1 if the firm exits via a merger or
acquisition and 0 otherwise. IPO is a binary variable equal to 1 if the firm has undergone an
initial public offering and 0 otherwise.
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Table A.2: Distribution of Major Fields and PhD Ratios

Major Field Count PhD Ratio
Business 64,412 0.0078
Other 46,846 0.1681
Media/Art/Design 16,702 0.0096
Finance/Accounting 10,374 0.0139
Other Engineering 9,878 0.1187
Computer Science 9,250 0.0692
Economics 7,851 0.0218
Psychology 4,322 0.0539
Politics 3,759 0.0245
Education 3,331 0.1225
Biology 2,805 0.2510

Notes: This table presents the distribution of individuals working in the VC industry by
the major field of their highest degree and the corresponding PhD ratios. The data is
sourced from Revelio Labs rather than PitchBook, as Revelio Labs provides better coverage
of non-partner roles in the VC industry, including analysts and associates. The sample of
VC firms and partners is consistent with our regression analysis dataset, which includes all
VC firms who participated in at least one VC funding round for a US startup founded
between 2000 and 2023.
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Table A.3: Major Concentrations of Patners’ Highest Degree

Panel A: Bachelor
Major Concentration Count
Economics 814
Computer Science 399
Business Administration 360
Finance 352
Political Science 168

Panel B: Master
Major Concentration Count
Finance 945
Computer Science 354
Business 310
Management 276
Business Administration 263

Panel C: PhD
Major Concentration Count
Computer Science 166
Medicine 160
Electrical Engineering 134
Physics 104
Biochemistry 103

Notes: This table presents the distribution of major fields for VC partners’ highest
academic degrees, categorized by Bachelor’s, Master’s, and PhD levels. The data reflects
the educational backgrounds of VC partners, highlighting the prevalence of degrees in
economics, finance, and business. The data is from PitchBook. The sample of VC firms is
consistent with our regression analysis dataset, which includes all VC firms who
participated in at least one VC funding round for a US startup founded between 2000 and
2023.
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Table A.4: Investment Decision

Invest
(1) (2) (3)

PhD.Ratio 0.3493∗∗
(0.1707)

PhD.Ratio × isLowTech -0.4579∗∗∗ -0.4801∗∗∗ -0.4801∗∗∗
(0.1035) (0.1101) (0.1101)

Investor FE Y Y Y
Year FE Y Y Y
Company FE Y Y Y
Investor×Year FE Y
State FE Y
Observations 10,427,762 10,427,762 10,427,762
R2 0.23503 0.24444 0.24444

Notes: This table estimates the effects of the ratio of PhD-holding
partners on investment choice. The dependent variable is an in-
dicator that equals 1 if the VC invests in the startup and 0 oth-
erwise. The main variable of interest, isDeepTech×PhDRatio, is
the interaction between isDeepTech, an indicator that equals 1 if
the startup has job postings requiring a PhD, and PhDRatio, the
proportion of PhD-holding partners within the VC firm. Column
(1) includes investor fixed effects, year fixed effects, and company
fixed effects. Column (2) further adds VC-year fixed effects, while
Column (3) includes VC-year and state fixed effects. Standard
errors are clustered at the VC level. * p < 0.10, ** p < 0.05,
***p < 0.01.
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Table A.5: Investment Performance

Close M&A IPO M&A and IPO
(1) (2) (3) (4)

isLowTech 1.471∗∗∗ 5.755∗∗∗ -6.000∗∗∗ 1.674∗∗∗
(0.1735) (0.3892) (0.3727) (0.3736)

isLowTech × PhD.Ratio 0.1762 2.303 -5.175∗∗∗ -0.8234
(1.184) (2.125) (1.710) (2.086)

Investor×Year FE Y Y Y Y
Industry FE Y Y Y Y
Controls Y Y Y Y
Observations 182,405 182,405 182,405 182,405
R2 0.31831 0.41627 0.48798 0.45308

Notes: This table reports the effects of the ratio of PhD-holding partners
on investment performance. VC-year fixed effects and industry fixed effects
are included. Control variables include the startup’s founding year, whether
the startup has a PhD founder, and deal type. The dependent variable in
columns (1), (2), and (3) is a dummy variable indicating startup failure,
merger and acquisition (M&A), and IPO, respectively. The dependent vari-
able in column (4) is an indicator variable for either M&A or IPO. Standard
errors are clustered at the VC level. * p < 0.10, ** p < 0.05, ***p < 0.01.
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