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Abstract

Using a novel historical dataset of U.S. scientists in the 1960s and tracking their
business formation activities, this paper examines the causal effect of venture cap-
ital (VC) on scientists’ selection into entrepreneurship. I leverage the 1979 reform
of the "prudentman" rule under the Employee Retirement Income Security Act as a
natural experiment that positively shocks the supply of VC. I exploit the exogenous
cross-sectional variation in how scientists’ work specialties rely on tangible versus
intangible capital using large language models. I show that scientists’ business
formation almost doubled post ERISA, and the effects are stronger for those with
intangible specialties and those working in the private sector. These scientists were
not marginal entrants but had higher wages and were named inventors on patents.
These effects ultimately facilitate the growth of intangible industries. I quantify
the effect of VC on alleviating financial constraints through an occupational choice
model.
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1 Introduction

Technology entrepreneurship is widely recognized as a critical source for economic

growth. By fostering innovation, creating employment opportunities, and fueling com-

petitiveness, technology entrepreneurship not only stimulates broader market devel-

opment but also improves productivity (Aghion andHowitt, 1992; Schumpeter, 1983).

Venture capital (VC) has long been recognized as a driver of innovation and busi-

ness formation (Nanda and Rhodes-Kropf, 2017; Howell, 2017). Macro-level evidence

suggests that regions receiving greater VC inflows exhibit stronger economic growth

and innovation (Kortum and Lerner, 2000; Samila and Sorenson, 2011). Highly skilled

individuals forming startups are especially important in the context of technology en-

trepreneurship (Akcigit and Kerr, 2018; Christensen, 2011).

Despite the recognized importance of VC in financing innovation, we have limited

causal evidence of the impact of VC on the entrepreneurial entry decisions of highly

skilled individuals (i.e., scientists). In otherwords, do promising projects go unfunded

without VC? If so, what type of projects are left unfunded?

Answering these questions is empirically challenging for two main reasons. First,

there are few historical instances of exogenous shocks to the supply of VC. VC flows

to placeswhere there are opportunities and local entrepreneurial ecosystems, and such

places are likely to take off even in the absence ofVC funding. Second, the entrepreneurial

entry decisions of scientists remain largely unexamined due to a lack of systematic

data at the individual level. Typically, only those who start businesses are observed in

archival databases, while constructing a comprehensive dataset on potential entrepreneurs

is empirically demanding.

To overcome these challenges and causally measure the impact of VC on scientists’

selection into entrepreneurship, I exploit the 1979 reform of the "prudent man" rule

under the Employee Retirement Income Security Act (ERISA) as an exogenous shock

to the supply of VC. This ERISA reform by the Department of Labor relaxed pension

fund allocation restrictions and substantially increased the pool of capital available to

VC firms (Kortum and Lerner, 2000; Gompers, 1994). Prior to this reform, VC firms
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had difficulty raising funds because the “prudent man” rule, as one of the fiduciary

rules of ERISA, restricted pension fund investments in higher-risk assets such as small

firm equity. Existing research leveraging this policy change to examine the effect of VC

in international settings and at the county level (Gornall and Strebulaev, 2021), but its

effect within the U.S. at the individual scientist level has not been studied.

I construct a novel panel ofU.S. scientists active in the 1960s by compiling a snapshot

of their educational backgrounds and work experiences, which I then link to business

registration data to observe their subsequent selection into entrepreneurship. I exploit

the exogenous cross-sectional variation in scientists’ work specialties by classifying the

specialties according to their reliance on tangible assets. VC seeks scalability and out-

sized returns, which are usually more common in businesses that rely more on intan-

gible capital.1 Therefore, scientists with intangible work specialties are more likely to

be affected by the expansion of VC. More importantly, these individuals did not select

their specialties in anticipation of future VC inflows, as the U.S. VC market was negli-

gible in the 1960s, and bank financing was generally more accessible for scientists with

tangible specialties.

The main finding is that, following the ERISA reform, scientists becamemore likely

to start businesses. Business formation rate rose from 0.78% in the seven years be-

fore the reform to 1.49% in the seven years after. Scientists with intangible specialties

were 0.05% more responsive to the ERISA shock than those with tangible specialties.

The effects are primarily driven by scientists working in the private sector and those

who have filed a patent, with the effect size increasing to 0.18%. Given that the to-

tal business formation rate for all scientists was only 0.78% before ERISA, the effect is

non-negligible. I show that the main finding is significant under not only the linear

probability model but also the Logit and Probit models. Moreover, the result remains

robust when I (i) employ continuous measures of tangibility, (ii) exclude computer

science–related scientists to isolate the effect from the concurrent rise of personal com-
1There are several measures of intangibles at the firm level, using R&D expenses and selling, general,

and administrative (SG&A) expenses (Crouzet and Eberly, 2021; Eisfeldt and Papanikolaou, 2013, 2014;
He, Mostrom, and Sufi, 2025; Peters and Taylor, 2017). In this study, instead of at firm level, I measure
the reliance of intangible capital at the scientific specialty level.
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puting and associated intangible business opportunities, and (iii) exclude Delaware to

account for the legal structure of business registration.

This paper also uncovers important heterogeneity in the effects of VC. Scientists em-

ployed in the private sector are significantly more responsive to VC supply shocks than

those in universities, consistent with an entrepreneurial spawningmechanism. The ev-

idence underscores the role of VC in incentivizing inventors to commercialize innova-

tions outside of corporate boundaries. Moreover, the results show that VC encourages

high-quality entrepreneurship: scientists with a higher annual income and those with

prior patenting activity are more likely to found new ventures in response to increased

VC availability. These individuals are not marginal entrants but productive inventors,

highlighting the selective nature of VC-backed scientific entrepreneurship.

At the macro level, I document that VC facilitates the expansion of intangible in-

dustries. Counties with a VC presence exhibit substantial growth in both employment

and the number of establishments in intangible sectors. These aggregate trends are

consistent with the micro-level evidence on scientists.

To formalize this insight and rationalize the empirical findings, I use the occupa-

tion choice model developed by Evans and Jovanovic (1989) to quantify the role of

VC in relaxing financial constraints. The model captures the trade-off between starting

a business and remaining a wage worker. Using the data from my analysis and the

literature, this framework shows that VC relaxes financial constraints by 83.8%.

Overall, these findings demonstrate that VC significantly enhances the rate of busi-

ness formation among scientists, particularly those with intangible work specialties.

Far from being marginal entrants, these scientists often held patents and were recog-

nized as productive inventors. Moreover, VC contributes to broader economic growth

by enabling the expansion of the intangible economy.

RelatedLiterature. This paper contributes to several strands of literature in entrepreneur-

ship and financial intermediation. First, this paper speaks to the venture capital and

technology entrepreneurship literature, which highlights the role of VC-backed firms

in driving IPOs (Lerner and Nanda, 2020) and underscores the importance of moni-
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toring, staged financing, and value-added services (Bernstein, Giroud, and Townsend,

2016; Gompers, 1995; Korteweg and Sensoy, 2023). Gornall and Strebulaev (2021) use

members of theG7 as a comparison group and show that 65%of top public firmswould

not have been founded in the U.S. without the ERISA reform. However, the mecha-

nisms through which VC incentivizes highly-skilled individuals to start a business are

not yet fully understood. This paper shows causal evidence of the effect of VC on sci-

entists’ business formation decisions and explores the heterogeneity within the effects.

Consistent with Babina, Bernstein, andMezzanotti (2023), who find that the Great De-

pression contributed to the decline of technological entrepreneurship and accelerated

the shift of innovation toward larger firms, I find that VC deregulation had the oppo-

site effect, fostering entrepreneurial spawning as employees left established firms to

start businesses. The emergence of spinouts from established technology firms further

proves the role of VC in enhancing market competitiveness, a key driver of long-term

innovation and economic growth (Cunningham, Ederer, and Ma, 2021; Ma, 2025).

Second, my results provide insight into the literature on financial intermediation

and small business financing. Financial intermediaries play a key role in enhancing liq-

uidity and reducing information asymmetries. Prior research highlights that banks are

critical sources of financing for small andmedium-sized enterprises (SMEs), which of-

ten rely on debt (Robb andRobinson, 2014; Kerr andNanda, 2009;Nanda andNicholas,

2014) and home equity (Corradin and Popov, 2015; Kerr, Kerr, andNanda, 2022). Most

of the research on financial intermediation centers around banks. Literature has shown

that the intangibles of large firms are primarily associated with cash flow-based lend-

ing, whereas tangibles are also associated with asset-based lending (He, 2025). More-

over, banks have difficulty in assessing the quality of an innovation as part of the in-

tangible capital. As a result, a funding gap emerges—one that VC is better positioned

to fill. Departing from Hellmann, Lindsey, and Puri (2008), who study how banks use

venture capital investments to build lending relationships, I show that VC, as a special

type of financial intermediary, is particularly good at financing technology startups

and complements banks.
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Finally, the findings contribute to the broader discussion on the role of financial in-

termediaries in economic growth. The share of intangible assets in firms’ capital stock

and the aggregate economy has increased markedly in recent decades (Corrado, Hul-

ten, and Sichel, 2009; Crouzet andEberly, 2021; Eisfeldt andPapanikolaou, 2014;Haskel

and Westlake, 2017). Prior research shows that bank financing can support intangible

investment when patents serve as collateral, facilitating access to debt capital (Mann,

2018; Morse, 2024). Relatedly, Hochberg, Serrano, and Ziedonis (2018) document the

use of patent-backed assets in venture lending. This paper offers a complementary

perspective: VC is particularly well suited for financing intangible assets due to their

non-rival nature and scalability (Crouzet, Eberly, Eisfeldt, and Papanikolaou, 2022).

The expansion of the VC market has played a critical role in supporting the growth of

intangible industries.

The rest of this paper is organized as follows. Section 2 provides an overview of the

historical context of financial intermediaries for small business financing. Section 3 de-

scribes the data sources and presents descriptive statistics on the scientists included in

the analysis. Section 4 examines the reduced-form relationship between the VC supply

and business formation and explores the two mechanisms. Section 5 investigates the

effects of VC at macro level. Section 7 concludes.

2 Historical Context

The financing landscape for technology entrepreneurship remained largely informal

until the advent of venture capital in 1959, marked by the establishment of Draper,

Gaither & Anderson (DGA), the first venture capital firm structured as a limited part-

nership. DGA’s investment strategy laid the groundwork for private capital invest-

ment, emphasizing four key criteria: "(1) companies offering unique products or ser-

vices, (2) substantially developed offerings with predictable commercialization time-

lines and costs, (3) a clearly identifiable market, and (4) the presence of or access to

qualifiedmanagement." Similarly, Greylock’s 1965 offeringmemorandumunderscored
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a preference for speculative startups characterized by innovative products, processes,

or technologies (Nicholas, 2019).

However, raising capital for new ventures posed significant challenges because of

the limited investment avenues available for entrepreneurs. Traditional sources of fund-

ing, such as SBICs, were off-limits to those unwilling to accept government loans. Addi-

tionally, institutional investors, such as pension funds, were constrained by regulatory

frameworks like the "prudent man" rule, which prohibited investments in higher-risk

assets, including venture capital. This left individual investors as a potential source of

funding, but this route presented its own challenges. The volatility of personal wealth,

stemming from events such as divorce or death, created issues regarding the valua-

tion of invested capital and could result in protracted disputes over the worth of early-

stage ventures. Consequently, the difficulty of securing funding in this era was com-

pounded by a complex interplay of regulatory constraints and the inherent risks of

dealing with individual investors. By the mid-1970s, there were no more than about

30 fairly substantial venture capital firms nationwide. Even the more established VCs,

such as Greylock and Venrock, managed relatively small investment pools by modern

standards (Nicholas, 2019).

The absence of institutional investors and regulatory constraints on pension fund

investments further restricted the growth of the venture capital industry, leaving early-

stage startups with limited funding opportunities. Before the ERISA reform in 1979,

the "prudent man" rule deterred many pension managers from allocating capital into

VC funds, as investing in small business securities can be seen as imprudent. ERISA

set the fiduciary requirement imposed on private pension funds, according to which a

managermust discharge their duty "with the care, skill, prudence, and diligence under

the circumstances then prevailing that a prudent man acting in a like capacity and

familiar with such matters would use in the conduct of an enterprise of a like character

and with like aims." A fiduciary must protect investors by continually monitoring. The

fiduciary requirements imply that investing in small business securities can be of high

risk. Moreover, ERISAwas overseen by both the Treasury and theDepartment of Labor
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at that time, which imposed unnecessarily complex administrative requirements.

In August 1978, President Jimmy Carter proposed the ERISA reorganization plan

to Congress, and it was approved in October. 2 The Treasury was to have statutory

authority for the minimum standards, while the Department of Labor (DOL) was to

have statutory authority for the fiduciary obligations.

In June 1979, the DOL explicitly clarified the fiduciary requirement in a federal reg-

ister (Figure A1), allowing fund managers to invest capital in venture funds as part

of their total portfolio. This reform significantly increased the supply of capital to VC

funds, as shown in Figure A2. The fundraising patterns were mirrored in the invest-

ments by venture capitalists into small firms (Kortum and Lerner, 2000). In a similar

spirit, the staggered adoption of “prudent man” rules, prompted by the 1994 Uniform

Prudent Investor Act, also increases capital commitments to the local venture capital

industry (González-Uribe, 2020).

The composition of limited partners in VC funds changed significantly due to the

ERISA reform. Prior to the ERISA reform, the limited partners of VC fundswere evenly

distributed among industrial corporations, insurance companies, foundations, and in-

dividuals. But by 1984, pension funds had become the single most important source of

VC funds (Florida and Kenney, 1988). It is important to note that ERISA regulations

do not apply to state pension funds, as these funds are governed by state laws rather

than federal regulations. State pension funds typically adhere to more conservative

investment strategies, prioritizing fixed income and public equities.3 While ERISA ex-

clusively affects private pension funds, these funds generally exhibit greater allocations

to VC compared to state pension funds.
2Message to Congress Transmitting Reorganization Plan No. 4 of 1978.
3The largest state pension funds (e.g., CalPERS, CalSTRS, NYSCRF, Texas TRS) have some VC expo-

sure but allocate a relatively small proportion of their total assets to VC compared to private pensions.
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3 Historical Data

3.1 Scientists and Engineers

At the heart of this paper is the comprehensive database of historical scientific and tech-

nical personnel of the U.S. that I assembled. To comprehensively understand the state

of U.S. scientific and technical personnel in the 1960s, I collected individual-level data

from two sources: the National Register of Scientific and Technical Personnel (NRSTP)

from the National Archives and the American Men of Science (AMS). I then tracked

their business formation activities from 1970 onward.

There are two main reasons for collecting data on scientists in the 1960s instead of

earlier or later years. First, the ERISA shock was unanticipated during this period, as

the U.S. venture capital market was still in its early stages. Therefore, scientists did not

select their work specialties based on future financing opportunities. Even if they had

such intentions, they would have likely chosen tangible specialties that were more eas-

ily financed by banks. Second, the NRSTP data ends in 1972; subsequent versions are

anonymized, preventing the linkage between individual scientists and business regis-

trations.

3.1.1 National Register of Scientific and Technical Personnel

I retrieved theNRSTPdataset from theNationalArchivesAccess toArchivalDatabases.

The NRSTP was initially created by the National Science Foundation (NSF) to identify

specialized professionals for national emergencies, but once the data’s utility for sta-

tistical analysis was recognized, its primary function shifted toward providing a key

source of statistical information on scientific and engineering personnel.4 It provided

critical data for developing science policy and supplied information to Congress and

government agencies.

The NRSTP records professionals in various scientific and technical fields, includ-

ing biology, chemistry, economics, geology, mathematics, psychology, meteorology,
4https://aad.archives.gov/aad/series-description.jsp?s=3550. Last retrieved on August 25, 2025.
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physics, anthropology, political science, and sociology. The register was created in col-

laboration with several professional organizations, including the American Institute of

Biological Sciences, the American Chemical Society, the American Mathematical Soci-

ety, and the American Psychological Association.

This dataset contains surveys distributed over eight years through various academic

societies to respondents who were predominantly academic and research profession-

als.5 The content of each record varies slightly by year, but typical entries include de-

tails such as name, institution, sex, age, educational background, employment spe-

cialty, job function, self-reported income, language ability, citizenship, and member-

ships in professional organizations. Additional information, such as place of birth (af-

ter 1966) and government sponsorship (after 1962), is included in later years. This

dataset thus serves as a comprehensive source for understanding the workforce dur-

ing these periods. The survey response rate was approximately 60% but varied across

academic societies. For instance, in 1968, the response rate among biologists was 54%,6

while around 70% of the eligible individuals in the Register of the American Mete-

orological Society responded.7 Additionally, the NSF reported that over 90% of U.S.

science doctorates were captured in the 1964 wave of the survey.

This paper uses the 1962–1968 NRSTP data because these four waves include in-

formation on the scientists’ city of residence. The data was processed by extracting

information from the digitized codes, as shown in Figure 1. Subsequently, the codes

for each variable are matched with their meaning, which is documented in the photo-

copies of the codebook films. The raw digitized format consists of thousands of entries,

with each line representing an individual record. The values in different positions in

each line correspond to different variables (i.e., survey questions). To analyze the data,

I first separate these values into their respective variables. Subsequently, I match the

numbers with their descriptions based on the codebooks, which are scanned docu-
51954, 1958, 1960, 1962, 1964, 1966, 1968, and 1970. The Survey of Doctorate Recipients continues

the NRSTP survey after 1970. However, it uses anonymized census data, making it impossible to link
scientists to business registration records.

6American Institute of Biological Sciences Annual Report 1969.
7Bulletin of the American Meteorological Society, Vol. 47, No. 8, August 1966.
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ments without optical character recognition (OCR). I manually clean the codebooks

to ensure accurate mapping between numerical values and descriptions. Where the

original scan is faint, certain words are best guesses by ChatGPT-4o based on common

nomenclature. ChatGPT excels at this task, as the transformer models are trained to

reconstruct incomplete sentences and words.

3.1.2 American Men of Science

I digitized the eleventh edition of AMS which was compiled from 1960 to 1965. First

published in 1906 by JamesMcKeenCattell, theAMSdirectory is an exceptionally com-

prehensive source of biographical information formale and female scientists across the

United States and Canada. Although some studies have used the Minerva Jahrbuch der

Gelehrten Welt for academics’ information (Iaria, Schwarz, and Waldinger, 2024), it is

more of a worldwide directory of academics, yet does not necessarily have the most

comprehensive coverage for North America.

The AMS was created through questionnaires with the assistance of various scien-

tific societies, universities, research labs, and anAdvisory Committee appointed by the

National Academy of Sciences, the National Research Council, and the American As-

sociation for the Advancement of Science. As per the Preface to this edition, the criteria

for inclusion are:

1. Achievement, through experience and training, of stature in scientificwork equiv-

alent to that associated with a doctoral degree, coupled with continued activity

in such work.

2. Research activity of high quality in science, evidenced by publication in reputable

scientific journals, or, for those whose work cannot be published due to govern-

mental, commercial, or industrial security, by the judgment of peers among im-

mediate co-workers.

3. Attainment of a position of substantial responsibility requiring scientific training

and experience equivalent to that described in (1) and (2).
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The directory is divided into two sections: Physical and Biological Sciences, and Social

and Behavioral Sciences. Only the first section was digitized, because the primary fo-

cus of this research is the scientific and technical personnel. This section contains six

volumes, and there are around 25,000 entries per volume.

Each entry in the AMS directory provides detailed biographical information about

individual scientists, including their education, career history, and areas of research

(see the example in Figure 1), providing a comprehensive view of their scientific contri-

butions and professional backgrounds. The records also contain socioeconomic infor-

mation, which comprises personal data such as the individual’s date of birth, marriage

year, number of children, and contact address.

59%of the addresses in theAMSdataset include the zip code, whilemany addresses

only have street names and the city or state. I utilize cloud-based services to enhance

the dataset. Specifically, I employ the OpenStreetMap API, which enables the retrieval

of the zip code based on the provided addresses. The API helps to increase the propor-

tion of addresses with zip codes from 59% to 64%. This approach not only improves

the geographic analysis of scientists, but is also critical for linking individuals across

databases (e.g., based on names and zip codes).

3.1.3 Concatenating the Two Data Sources

I first drop all the scientistswhose county location ismissing because the latermatching

process relies on both name and location. In the NRSTP dataset, 10% of the entries are

missing the county FIPS, while 45% of entries in the AMS are missing this data.8

After this data processing, my NRSTP sample records include 447,317 scientists

who responded to the survey between 1962 and 1968. TheAMS sample includes 59,877

scientists who appeared in the 1965 edition. 31,468 scientists appear in both datasets

based on name and county location. For the overlapping entries, I retain the records in

theNRSTP because the variables recorded there aremore comprehensive than in AMS.
8Zip codes are mapped to counties because people are likely to move or start businesses within a

county but not necessarily within the same zip code. The mapping of zip codes to county FIPS codes
comes from the U.S. Department of Housing andUrbanDevelopment’s USPS ZIP Code Crosswalk Files.

11



56% of the AMS scientists appear in the NRSTP records, indicating that the NRSTP has

a good record of senior scientists. Thus, AMS serves as a complementary dataset to

the NRSTP records on the senior scientists. This results in 475,726 scientists. Because

my further analysis requires tangibility of specialty, I drop 17,023 scientists whosework

specialties aremissing or not correctly recorded. The final dataset contains information

on 458,703 scientists.

3.2 Matching Scientists’ Data with Other Databases

3.2.1 Matching Scientists and Engineers with Business Registrations

Business registrations in the U.S. are stored by each state’s Secretary of State. Open-

Corporates gathers this data and distributes it as a single download package.9 This

paper uses data from all jurisdictions (i.e., states) within the U.S. It should be noted

that bankruptcies or any other type of litigation against a company are not listed in the

records of the Secretary of State. Instead, this type of information would have to be

discovered through a litigation search.10

The business registry data fromOpenCorporates covers 76million businesses across

all U.S. states. The data includes incorporation dates and dissolution dates, as well as

the state and registration address for the business. Businesses can be registered inmore

than one state. For example, a Texas business that also does business in Florida may be

registered as a domestic company in Texas and as a foreign company in Florida (Griffin,

Kruger, and Mahajan, 2023). In addition, many firms are registered in the state they

operate in as well as in Delaware. OpenCorporates covers both and often connects the

two registrations through the branch and foreign company variables. The vast majority

of businesses formed by the scientists in my sample are domestic firms only.

Although census data, such as the Longitudinal Business Database (LBD), contains

business registration information, it only begins in 1976, which is too short a period

before the ERISA reform in 1979 to conduct a parallel trend test. OpenCorporates pro-
9I obtained the data under the reference OCESD-14963, data version as of January 2025.

10https://www.jonesday.com/en/insights/2012/10/public-disclosure-requirements-for-private-
companies-us-vs-europe. Last retrieved on August 25, 2025.
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vides business registry data dating back to the 1940s or earlier, depending on the state’s

records. It also includes the names of the officers linked to the companies, which is es-

sential for matching with the scientists’ data. Therefore, OpenCorporates provides the

most consistent, publicly available dataset on U.S. business registrations.

The business addresses in OpenCorporates are cleaned using regularization to ex-

tract the zip codes and I then match them to the corresponding county. During the

period I use to match the addresses with scientists (1945-1990), 57% of the 14,495,168

firms in the dataset possess registered address data. Among these firms, 84% include

the zip code. I use OpenStreetMapAPI to obtain the zip codes for the remaining 16% of

the non-standard addresses, thereby obtaining the zip codes for an additional 155,820

addresses and enhancing the coverage of the zip code to 93%.

I use the spaCy library (en_core_web_lg) to classify whether an officer’s name in

the OpenCorporates is likely a human name or a company name. Specifically, the func-

tion checks whether the input text includes any entities labeled as "PERSON" by the

NLP model. This analysis reveals that 88.08% of the officer names are classified as hu-

man names rather than company names, providing insight into the composition of the

entities recorded in the dataset.

I then map the OpenCorporates data to the AMS and NRSTP data by name and

county FIPS code. I only match scientists to businesses formed between 1945 and 1990

because the scientists in my data sample were born in the 1920s and 1930s. After 1990,

they would likely be too old to start a business, and the risk of mistakenly matching

individuals with the same name but different identities becomes more significant. In

the final data sample,11 3.16% of the scientists are found to be associated with at least

one business.

3.2.2 Matching Scientists and Engineers with Patent Data

The patent data is from the PatentCity dataset (Bergeaud and Verluise, 2024), which

provides the zip code and inventor names of U.S. patents dating back to 1836. Com-
11Only scientists with work specialty information are included in the final sample.
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pared to the USPTO dataset, which began recording inventor names only in 1976, the

PatentCity dataset provides better coverage of historical patent data. It includes records

of the “first publication of granted patents,” meaning that only the patent applications

corresponding to granted patents are included in the dataset.

I then map the patent data with the AMS and NRSTP data by name and county

FIPS code. Again, I only match scientists to patents filed between 1900 and 2000 to

reduce the risk of mistakenly matching individuals with the same name but different

identities. In the final data sample, 8.61% of the scientists are found to be associated

with at least one patent.

3.2.3 Matching Scientists and Engineers with Publication Data

To measure scientific productivity, I match the scientists with their publications and

citations from SciSciNet (Lin, Yin, Liu, and Wang, 2023), based on the full data from

Microsoft Academic Graph (MAG, now OpenAlex). MAG was updated weekly until

December 2021. SciSciNet covers over 134 million scientific publications and millions

of external linkages to funding and public uses.

I restrict the data to authors with at least one English-language journal publication

between 1900 and 2000. I match the scientists and engineers with the author_ids in

MAG, using first and last names, as well as the county FIPS of the author’s institutional

affiliation. Based on the birth year of the scientists and engineers, I further restrict the

matched publications to scientists with no publications after 2005. In the final data

sample, 9.51% of the scientists are found to be associated with at least one published

paper.

3.3 Descriptive Statistics

My final sample consists of 458,703 scientists with recorded county FIPS codes and

work specialties. This section documents the characteristics of the scientists inmy sam-

ple.
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Gender The AMS dataset lacks gender information, so I supplement it with the gen-

der guesser library. The gender guesser tool utilizes a dataset of approximately 40,000

first names and their associated genders, covering most first names in European coun-

tries. For each scientist, I first check the NRSTP for gender information and used it if

available. If not, I apply the gender guesser to predict the gender based on the scientist’s

first name. The sample of scientists and engineers is dominated by males, with 417,903

male scientists and 38,895 female scientists. This is consistent with the literature.

Cohort The NRSTP dataset does not include the date of birth as AMS does, so I de-

velop a method to predict the scientists’ year of birth based on the Year of Highest

Degree and the Level of Highest Degree recorded in the NRSTP. I assume that indi-

viduals typically obtain their PhD (or higher, such as MD) around the age of 30, a

Master’s degree around the age of 25, and a Bachelor’s degree around the age of 22.

Using these assumptions, I estimate the year of birth by subtracting the predicted age at

the time the highest degree was obtained from the Year of the Highest Degree, thereby

improving the overall coverage of missing birth year information. The overall sample

is dominated by the Silent Generation (i.e., born between 1928 and 1945). They grew

up during the Great Depression and World War II, which shaped a more risk-averse

and pragmatic outlook (Figure A3).

Education The data sample comprises 458,703 scientists, including 160,082 PhDhold-

ers and 10,996 MD holders. The average year in which the scientists obtained their

highest degree is 1954. University names are standardized by mapping them to the In-

tegrated Postsecondary Education Data System using both the institution’s name and

city location. The top three alma maters among the scientists are the University of

Michigan-Ann Arbor, Columbia University, and the University of California-Berkeley,

while elite institutions such as Harvard University andMIT are also very common (Ta-

ble A2).
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Geographical Location The majority of scientists are concentrated around San Fran-

cisco, Los Angeles, and counties in New England (Figure 2). However, it is worth

noting that there are also concentrations of scientists in the central U.S.12 This concen-

tration suggests that the critical expertise and resources were likely pooled in specific

regions, possibly due to the specialized infrastructure or proximity to major research

institutions and contractors for government programs (such as the defense program

and space program).

Income The scientists earnedmore than the general population in the lower andmid-

dle quantiles (Table A3). Income inequality within the scientific community is less

than that of the overall U.S. population. The median wage is higher than the general

population, yet the top 1% is lower. These reflect the relatively standardized wage

structures within scientific professions.

Employment Most of the scientists are employed in private industry or business,

while a significant number also work in colleges and universities (Table A4). The pro-

portion of scientists and engineers in private industry is comparable to that in academia.

Within the private sector, the top employers are typically in the chemical manufactur-

ing and petroleum-related industries, the electrical and electronics sectors, and large

aerospace and defense contractors (Table A5).

WorkSpecialty Amajor challengewas to compile thework specialties into an individual-

year panel. The NRSTP generates a sequence of identifiers for each specialty in each

wave of the survey. However, these identifiers vary across waves, and the classification

of specialties changed year by year. For instance, Probability and Statistics was later di-

vided into two separate specialties: Probability and Statistics. To link specialties across

years, I standardize names and manually merge or split the specialties as needed. If a

scientist appears in multiple waves of the NRSTP survey, I retain the most recent first
12For example, during the Cold War, Natrona County (FIPS 56025) in Wyoming was involved in ura-

nium mining, which was crucial for nuclear weapon development. El Paso County (FIPS 08041) in
Colorado is home to the North American Aerospace Defense Command. Additionally, Pima County
(FIPS 04019) in Arizona housed a Titan II missile complex, which was operational from 1963 to 1987.
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work specialty as their specialty. I also show that scientists typically do not change the

tangibility of their specialty (Table A10). The data sample reveals a strong educational

background concentration in Chemistry, the Theory and Practice of Computation, and

Physics (Table A6).

Patents and Publications The average publication rate among scientists is slightly

higher than the patent rate, which in turn exceeds the business formation rate (Table

1). Most businesses founded by scientists do not have a granted patent. On average,

each scientist publishes two papers in their lifetime, with a median citation count of

11 and a typical coauthor count of one to two. While most publications are not linked

to patents, some highly influential papers are cited by approximately 30,000 patents.

There is a weak correlation between business formation activity and both patenting

and publishing activity, indicating a limited association between these factors (Table

A7). This suggests that scientific output and intellectual property generation do not

strongly predict entrepreneurial activity among scientists. Figure A4 shows the num-

ber of patents filed per scientist over this time. The data indicate that scientists aremost

active in patenting during their 30s and 40s. Patenting activity in the sample declines

markedly after 1970, and by the time of the ERISA shock in 1979, it had nearly ceased

altogether.

4 VC on Scientists’ Entrepreneurial Entry

I use the 1979 ERISA reformas an exogenous shock that led to the large-scale emergence

of VC as a financial intermediary for two reasons. First, this reform is unique in its

significant impact on VC fundraising, as one of the few regulatory changes to have

such an effect. While the capital gains tax cut in the 1980s could also have influencedVC

investments, most VC investors post-1980were tax-exempt institutions, such as pension

funds, endowments, and trusts, so the supply effect of this tax cutwas small (Gompers,

1994; Gompers and Lerner, 1999). Second, the early-stage equity investment landscape

of the 1980s had not yet developed a standardized approach. Equity investment in
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small businesses was primarily provided by individuals, with little involvement from

financial intermediaries. Furthermore, angel investment was not popularized until the

1990s. The ERISA reform played an important role in establishing VC as a key financial

intermediary in equity investment. After the ERISA reform, both the number of deals

and the total investment amount surged, as illustrated in Figure A2.

I first show that in my data sample, business formation steadily increases over the

sample period, with no abrupt change around the 1979 ERISA reform (Figure 4, num-

bers of business formed are normalized to 1978). Business formation by scientistsmore

than doubled following the ERISA reform, indicating its unique impact on scientists.

Notably, the total business formation rate for the scientists from 1945 to 1990was 3.15%.

Yet, during 1971 to 1978, the seven years before ERISA, this number was just 0.78%.

4.1 Measuring the tangibility of specialties

The 1979 ERISA reform represents a one-off exogenous shock. As the ERISA reform

did not take place until 1979, scientists could not have chosen their work specialties

based on anticipated VC funding in the 1960s. Even if their choice of work specialty

was influenced by anticipated funding opportunities, they would likely have favored

fields more suitable for bank lending. Therefore, scientists’ work specialties provide

exogenous cross-sectional variation in the exposure to the VC shock, and thus for a

Difference-in-Differences (DiD) design.

The cross-sectional variation is based on the assumption that scientists working in

fields more reliant on intangible capital likely faced greater exposure to the ERISA

shock. This is consistent with the literature that finds that the scalability of intangibles

can enable home-run success (Haskel and Westlake, 2017). Moreover, the assumption

is grounded in the fact that banks do not lend to intangible businesses for two reasons.

First, asset-based lending depends on the liquidation value of tangible assets that can

be pledged as collateral; intangible businesses typically lack such assets. Second, cash

flow-based lending relies on stable operational cash flows, which early-stage startups

often do not have. Consequently, intangible startups are less likely to receive bank fi-

18



nancing.

In this context, I define tangible specialties as those associated with physical prod-

ucts or processes (e.g., a machine or manufacturing method), whereas intangible spe-

cialties are related to non-physical outputs, such as software and algorithms.

To distinguish between tangible and intangible work specialties, I utilize a large

language model with the word embedding method (Ash and Hansen, 2023). I begin

by constructing a sample of publicly listed U.S. firms and collecting their company de-

scriptions from Compustat for the years 1985–1990. I then restrict the sample to firms

with two-digit SIC codes between 20–49 and 71–79, excluding sectors like wholesale

and retail where scientists are less likely to found businesses. Firms are double-sorted

by capital intensity (in descending order) and the share of intangible assets (in as-

cending order).13 Relying solely on the share of intangible assets on balance sheets as

a proxy for intangible assets is potentiallymisleading, as many forms of intangible cap-

ital (such as know-how and customer capital) are not captured in the book value due to

the inherently conservative principles of accounting (Gourio and Rudanko, 2014; He,

2025). The company descriptions of the top 100 firms are used to represent tangible

specialties, while those of the bottom 100 firms represent intangible specialties.

With the tangible and intangible corpora, I employ GPT-o3 to construct two distinct

dictionaries of scientific specialties, one associated with tangible-intensive firms and

the other with intangible-intensive firms. The prompt is described in detail in Section

7. Each resulting dictionary comprises 20 specialties that best align with the respective

firm’s technology and product. The contents of these dictionaries are listed in Table

A8.

I then embed both dictionaries, along with the work specialties, using SciBERT.

Word embedding provides a more robust approach than the bag-of-words method for

measuring the similarity between a dictionary entry and a word by capturing semantic

relationships in a continuous vector space. Unlike the bag-of-words approach, which

relies on word frequency and ignores context, embeddings account for meaning and
13Capital intensity is defined as the ratio of capital expenditures to total assets. The share of intangible

assets is the ratio of intangible assets to total assets.
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word associations, enabling more accurate comparisons (Jha, Liu, and Manela, 2025;

Li, Mai, Shen, and Yan, 2021). This is particularly valuable in my context, as it handles

the synonyms of scientific disciplines more effectively. SciBERT is a transformer-based

language model specifically trained for scientific text. Developed by Beltagy, Lo, and

Cohan (2019), it is based on BERT but pre-trained on a large corpus of scientific liter-

ature, including papers from Semantic Scholar. Its domain-specific training allows it

to better understand technical terminology and contextual nuances in scientific texts

compared to general-purpose language models.

The intangible (tangible) score measures the textual similarity between a scientist’s

specialty and the intangible (tangible) specialty dictionary. Table 1 shows the descrip-

tive statistics of the scores. The distribution of scores is presented in Figure A6. Some

specialties exhibit similarity to both the tangible and intangible dictionaries. For in-

stance, insect toxicology exhibits minimal difference between tangible and intangible

similarity scores. This suggests that textual similarity alone does not clearly categorize

this specialty as either tangible or intangible. For interpretability in regression analysis,

I define a binary variable: a scientist is classified as intangible if the difference between

their intangible and tangible scores falls in the top quartile, and tangible if it falls in the

bottom quartile. Specialties with intermediate differences remain unclassified. I also

include the continuous scores in robustness analyses and find similar results.

For reproducibility, I replicate the dictionary construction procedure using GPT-

o4-mini. The resulting dictionaries are reported in Table A9. The similarity between

the tangible scores generated by GPT-o3 and GPT-o4-mini is 0.980, while the similarity

for intangible scores is 0.988. Given the high concordance across models, I rely on the

GPT-3-based scores for the main analyses.

Table A11 compares the observables of scientists based on their tangible and intan-

gible specialties. The data reveal that female scientists are more likely to have intangi-

ble specialties. Scientists with tangible specialties are more frequently associated with

government programs in agriculture, atomic energy, and natural resources. In con-

trast, intangible specialties are more closely linked to government programs related to
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education, defense, and space.

Table A12 lists the companies with the highest proportion of employees with tangi-

ble and intangible specialties. The results indicate that companies operating in comput-

ing, data analytics, and systems development exhibit a higher concentration of employ-

ees with intangible specialties. Conversely, companies engaged in materials manufac-

turing and automotive parts employ a greater share of workers specializing in tangible

assets.

4.2 Effects of VC on Scientists’ Entrepreneurial Entry

The linear probability model with a DiD estimator is:14

Yit = αi + δt + βIntangiblei ∗ Post1979t +Controls+ ϵit (1)

Yit represents the outcome variables, including business formation and patenting

activities by scientists i in year t. Intangiblei is a binary variable that equals one if the

scientist’s work specialty is classified as intangible. Post1979t is an indicator variable

for the post-ERISA reform period. αi and δt denote individual and year fixed effects

respectively. Individual fixed effects capture time-invariant determinants of business

formation of individual scientists, such as gender and age. Year fixed effects control

for aggregate shocks and common trends in business formation activity produced by

legal and institutional changes at the federal level, such as the Economic Recovery Tax

Act of 1981. Each scientist is retained in the data only until the year when they start

a business, such that β can be interpreted as the differential change in the hazard of

business formation after ERISA by scientists with intangible and tangible specialties

(Basker and Simcoe, 2021). The results are clustered at the individual level, but all
14I did not use Logit or Probit models for two reasons. First, unlike OLS, Logit and Probit models rely

on maximum likelihood estimation (MLE), which is more sensitive to the distribution of the dependent
variable. Given that StartBusiness is highly imbalanced, MLEmay struggle to identify significant effects
(Timoneda, 2021). Second, in nonlinear models such as Logit and Probit, the DiD estimator does not
yield a straightforward interpretation as an average treatment effect. The parallel trends assumption
does not naturally hold in nonlinear models, and using fixed effects can lead to the exclusion of groups
with only 0s or 1s, reducing the sample size and potentially introducing bias. Nevertheless, I include
results with non-linear models in the appendix.
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results remain significant with county level clustering.

One concern is that individuals shift their occupational specialty when local VC

activity expands. For instance, a mechanical engineer might acquire computer science

skills and launch a software firm in response to increased VC activity. In this scenario,

the VC deal flow becomes a potential omitted variable. Although I do not observe the

tangibility of occupational specialties over time, I control for the number of VC deals

in each county-year. Table A15 includes other combinations of control variables and

county-year fixed effects. The results are significant and robust.

4.2.1 Business Formation

The results in Table 3 show that following the 1979 ERISA deregulation, scientists with

more intangiblework specialties are significantlymore likely to establish newventures.

The results are robust by adding a control in Column (2), year fixed effects in Column

(3), and individual scientist fixed effects in Column (4).

Figure 4 plots the coefficients and 95% confidence interval for the year interactions

with Intangible in Equation 1, using the full scientist-year panel. The beta in each year

estimates the probability of business formation by a scientist with an intangible work

specialty relative to a scientist with a tangible specialty. The figure shows that the

parallel trends assumption is satisfied, indicating that, in the absence of treatment, the

treatment and control groups would have followed similar trends over time.

Overall, the results indicate that scientistswith intangiblework specialties are 0.05%

more likely to start a business than those with tangible work specialties. Given scien-

tists’ overall business formation rate of 0.78% before the ERISA shock, this corresponds

to a relative effect of approximately 6.41%. This evidence suggests that the influx of pri-

vate capital effectively alleviates the financial constraints faced by scientists, thereby

fostering entrepreneurial and innovation activity.

4.2.2 Robustness Checks

I now consider the robustness of my main results.
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PlaceboAnalysis To validate the DiD design, I conduct a placebo analysis by exploit-

ing the spatial variation in VC presence. If the estimated effect captures the influence

of VC, there should be little impact observed in counties without VC activity, as invest-

ment opportunities generally circulate within local spaces (Sorenson and Stuart, 2001).

Table A16 presents the results separately by VC presence. Panel A restricts the sam-

ple to counties with at least one early-stage VC deal during the sample period. Panel

B includes scientists residing in counties without any VC presence. The results show

a significant effect only in Panel A, while no statistically significant effect is observed

in counties without VC presence, consistent with the interpretation that the estimated

effects are driven by exposure to VC.

Moreover, one may argue that the credit crunches resulting from Regulation Q co-

incided with the ERISA reform, and thus the effect may instead be driven by scien-

tists’ limited access to bank credit, which pushed them toward VC funding. However,

negative credit shocks to young firms can reduce overall business formation. To test

this, I use intrastate bank deregulation—an event within the sample period that led to

banking industry consolidation—as a source of negative credit supply to young firms,

because the consolidation increased banks’ bargaining power over small firms (Chava,

Oettl, Subramanian, and Subramanian, 2013; Hombert and Matray, 2017). The stag-

gered DiD results in Figure A7 show that the deregulation reduced scientists’ business

formation. Thus, the positive effect I document is unlikely to be driven by reduced

bank credit. Instead, it implies that, although credit crunches may reduce entry, the

increased supply of VC more than offsets this decline, leading to a net positive effect

on business formation.

Measurement of intangibility I test the main results with different definitions and

cutoff thresholds of the key independent variable, Intangible. Table A17 shows that

when I replace the binary definition of Intangible with a continuous variable as the

cross-sectional variable for the second difference, the results remain consistent with

the binary regression. Scientists with a specialty that has a higher intangibility score

are more likely to start a business after the ERISA shock, whereas those with a higher
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tangibility score are not affected by the shock.

Shocks concurrent with ERISA I address the potential concern that the main effect

is primarily driven by the progress of intangible technology, whereby the booming

intangible industry in information technology coincided with the ERISA shock. For

example, information technology suddenly enabled enormous business opportunities

in 1979. As a result, computer scientists and electronic engineers may drive the results.

Table A18 presents the results of excluding Silicon Valley-related specialties from the

sample and shows that the main estimates remain significant.

Legal structure of business registration I address the concern that many firms are

registered in Delaware due to the state’s legal infrastructure, so a single state may drive

the effect of business formation. Table A20 presents the results of excluding Delaware

from the data sample and shows that the main estimates are almost unchanged.

4.3 Entrepreneurial Spawning by Private Scientists

Scientists employed in the private sector and those in academia may differ endoge-

nously in their career incentives and human capital accumulation. Industry scientists

gain practical experience through real-world applications, which enhances their en-

trepreneurial capabilities and increases the likelihood of business formation. Would-be

entrepreneurs anticipating financing needs aremore likely to start businesseswhen the

supply of capital expands (Samila and Sorenson, 2011). In contrast, university scien-

tists tend to focus on fundamental research and scientific advancements, making them

less inclined to pursue commercialization or respond to an increase in the VC supply.

Indeed, Figure 5 and Table 4 indicate that the business formation effect is primarily

driven by the private sector, and not by those working in universities or the federal

government, or who are self-employed. While prior work finds that VC connections

facilitate university spinouts (Shane and Stuart, 2002), this study shows that university

scientists rarely do so, likely reflecting the innate type of university scientists thatmakes

them self-selected into academia.
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To further demonstrate the industry spinout effects, Figure 6 shows the bin scat-

ter of firm-level averages of spinout rates against the share of intangible and tangible

employees. In the top panel, the share of intangible employees is positively associated

with the spinout rate, whereas the bottom panel shows a modest negative slope for the

share of tangible employees. Taken together, the evidence supports the view that in-

tangible human capital within firms is a key driver of entrepreneurial spinout activity.

These results are consistentwith the literature on entrepreneurial spawning (Babina

and Howell, 2024; Gompers, Lerner, and Scharfstein, 2005) as entrepreneurial spawn-

ing occurswhen individuals become entrepreneurs because the large bureaucratic com-

panies for which they work are reluctant to fund their entrepreneurial ideas (Gompers

et al., 2005). Employees of large firms thus leverage their experience and expertise to

create spinout businesses. A widely cited example is Xerox’s Palo Alto Research Cen-

ter (PARC),which developed groundbreaking technologies like laser printing. Despite

its innovations, PARC struggled to gain support for commercialization. The executives

resisted moving the company beyond its traditional copier business, and most of the

value from Xerox’s inventions was captured by employees who left to start companies

like Adobe and 3Com.

Although engineers employed in large firms may be motivated to leverage their

expertise to transfer technology through business formation, the lack of financing for

potential startups to commercialize products can hinder entrepreneurial spawning.15

Moreover, though possessing technical knowledge, engineers may lack the business

acumen and network essential for entrepreneurship.16 The results in this section show

that VC reduces the financial constraints and incentivizes private scientists to spinout

from their employer.

I further explore the effect in California counties and non-California counties. Table

A19 shows that the size of the spinout effect is almost nine times larger for scientists
15For instance, the companies in the Central Florida Research Park (CFRP) in Orlando have struggled

to grow their size and customer base. As a result, the success of the CFRP is still overly tied to the
military budget.

16As venture capital funding was pouring into startups that focused not on rockets but on corporate
computers, Silicon Valley’s engineers were far less dependent on space contracts by 1969 (Miller, 2022).
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living in California compared to those living outside of California. This confirms that

California was the center of the VC industry and had the most vibrant entrepreneurial

ecosystem at that time.

4.4 Quality of Startups

The previous sections show that scientists working in the private sector, instead of uni-

versities, were the most responsive to the VC shock. A natural question that arises is

whether these individuals represent marginal entrants into entrepreneurship—that is,

scientists who were previously unable to obtain funding due to the lower quality of

their ideas andwho only entered the market following the expansion in the VC supply.

Productivity I use annual gross income as a proxy of productivity. Panel A of Ta-

ble 5 presents estimates for scientists employed in private industry. Columns (1)–(4)

stratify the sample by annual gross-income quartiles (Q1–Q4). The coefficient of inter-

action term is positive and statistically significant in every quartile, rising from 0.0841

in Q1 to 0.2561 in Q4. The monotonic increase implies that scientists with higher pro-

ductivity responded more strongly to the VC shock. Figure 7 corroborates this result.

The estimated VC effect for private-sector scientists increases monotonically across in-

come quartiles, and event study plots confirm that pre-treatment trends are parallel.

Columns (5)–(8) repeat the exercise for university scientists. All VC interaction terms

are statistically insignificant and display no systematic trend across income quartiles.

InnovationActivity I examinewhether the scientists’ innovation activity (i.e., patents

and publications) is related to business formation after the VC shock. It is worth not-

ing that although patents can serve as loan collateral and so reduce scientists’ financial

constraints, only about 2.5% of the patents issued in 1980 were pledged within five

years (Mann, 2018).17 Although some studies have shown that one-third of startups

used patents to collateralize and raise venture debt, the sample is already limited toVC-
17A key deterrent is legal uncertainty. Federal statutes such as the Patent Act treat a security interest

as a conditional transfer of title to the creditor, whereas the UCC allows the debtor to retain ownership
and merely grants the lender a security interest (Baldwin, 1994).
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backed startups; if the denominator were instead the universe of tech startups, the ratio

would be much lower (Hochberg et al., 2018; Serrano and Ziedonis, 2025). Moreover,

the scientists in my sample are the inventors rather than the assignees of the patents,

so they do not necessarily possess the patents granted for their inventions. Therefore,

being an inventor on patents is only used to proxy innovation activity, not financial

constraints, in this study.

In Table 6, Panel A, Columns (1) and (2) show that scientists who filed at least

one patent and were employed in the private sector were significantly more likely to

spin out. The effect is approximately 1%, indicating a 30% increase in the likelihood

of starting a business with a baseline rate of 3.15%. This substantial effect aligns with

the argument that inventors seek to appropriate the value from their inventions, but

large firms often capture most of the benefits, creating an incentive for them to spin

out. Columns (3) and (4) show that scientists who had published a critical journal

article were also more likely to start a business, though the effect is smaller compared

to patenting. This suggests that publishing scientific articles is less directly related to

commercialization, whereas patenting is more strongly associated with business for-

mation.

Although university scientists were not responsive to the VC shock in general, as

demonstrated in Section 4.3, almost half of the scientists in my sample worked in uni-

versities, so it is worth examining whether university scientists’ patenting and pub-

lishing activities were more attractive to VC. In Table 6, Panel B, Columns (5) and (6)

show that university scientists who had filed at least one patentwere significantlymore

likely to start a business. However, the share of university scientists who filed patents

is low. There is no significant effect of business formation among university scientists

who published journal articles, as shown in Columns (7) and (8). This differs from

the results in Panel A, which indicate that university scientists were less likely to start

a business compared to industry scientists and that publishing papers did not make

business formation more likely. Instead, filing patents appears to be a good signal to

VC.
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Table A21 tests coefficient equality by including indicator variables for whether

the scientist was a patent inventor and whether they were a paper author, each in-

teracted with the intangible specialty measure. The patent–intangible interaction has a

larger effect size and is statistically significant. The publication–intangible interaction

is roughly half as large and is not significant, suggesting that patenting, rather than

publishing, was the primary driver of the VC effect on scientists.

This section shows that the increased availability of VC incentivized private scien-

tists, especially those with higher productivity and innovation activity, to start a busi-

ness. This suggests that VC encouraged high-quality scientists who could not have

secured funding before to enter entrepreneurship, as opposed to marginal scientists.

5 Aggregate Effects of VC on Industry Growth

The previous results have shown the causal effect of a change in the supply of VC on

scientists’ entrepreneurial entry. These findings raise an important question: how do

such changes ultimately affect industry productivity and real outcomes? By document-

ing that VC has a positive effect on industry size and value added, I provide evidence

for a channel for the rise of the intangible economy in the U.S.

Consistent with the method used in Section 4.1, I restrict the sample industries to

two-digit SIC codes between 20–49 and 71–79. Industries are double-sorted by the av-

erage capital intensity (in descending order) and the share of intangible assets (in as-

cending order) of the firms. The top half of industries are classified as tangible indus-

tries, and the bottom half as intangible industries.

I use County Business Patterns (CBP) data files from 1974 to 1984 for the business

formation data. The data collection process heavily relied on administrative records,

particularly from the Internal Revenue Service (IRS), and existing Census Bureau sur-

veys, with employer-reported information forming the foundation of theCBP. The IRS’s

quarterly payroll file18 served as the cornerstone for collecting payroll data, especially

for single-establishment employers.
18Treasury Form 941.
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I estimate the following specification:

Yict = βIntangiblei × Post1979t + ηi + ηct + ϵict (2)

Yict represents the outcome variables, including the number of establishments and

employment in industry i, county c, and year t. Intangiblei is a binary variable that

equals one if the SIC two-digit industry is classified as intangible. Post1979t is an in-

dicator variable for the post-ERISA reform period. ηi and ηct denote individual and

county-year fixed effects respectively. Industry fixed effects capture time-invariant de-

terminants of industries, such as technological intensity, capital structure, and regu-

latory environment. County-year fixed effects control for localized macroeconomic

shocks, labor market conditions, and demographic trends that vary over time.

Table 7 presents the effects of VC on industry-level outcomes. Column (2) indi-

cates that, following the ERISA reform, the average number of employees in intangible

industries increased by 106. Relative to the pre-ERISA mean of 398 employees per in-

dustry, this corresponds to a 27% increase. Columns (3) and (4) demonstrate that this

effect is concentrated in counties with VC activity. In these counties, employment in

intangible industries increased by an average of 592 post-ERISA. These patterns are

consistent across measures based on the number of establishments, both overall and

those with 1–4 employees. These findings suggest that VC played a significant role in

expanding the size of intangible industries in the post-ERISA period.

A potential concern is that the estimates may simply capture a general rising trend

in the intangible industry. To address this issue, I redefine the dependent variable as

the industry-level growth rate in each county. Table A22 shows that VC also facilitated

the growth rate of intangible industries, not merely their levels.

To assess the robustness of the measure of intangibility, I cross-validate it using

the liquidation recovery rate of Property, Plant, and Equipment (PPE) from Kermani

and Ma (2023). The liquidation recovery rates in the data are calculated as the ratio of

liquidation value to replacement cost. Industries with lower PPE recovery rates tend to

face tighter borrowing constraints and exhibit higher levels of intangibility. Intangibles
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are especially pronounced in industries where physical assets are more specific. Table

A23 examinesVC’s heterogeneous effects across industrieswith varying recovery rates.

The results are consistent with those in Table 7, showing a relative decline in industry

size post-ERISA among industries with high recovery rates.

These results support the hypothesis that VC contributed to the growth of intangi-

ble industries. The findings on the number of establishments are consistentwithmicro-

level evidence of increased entrepreneurial entry by scientists and imply a broader ef-

fect on the population outside of scientists.

6 A Simple Framework to Quantify the Effects of VC

The empirical evidence presented suggests that VC incentivized intangible scientists

to start businesses. This raises two related questions: why is the effect so pronounced,

with business formation increasing by 1.8 times following the ERISA reform; and, at

the same time, why does the effect remain limited, given that only 1.5% of scientists

pursued entrepreneurship even after the reform? The model provides a framework to

reconcile these observations.

This section highlights howVC alleviated scientists’ financial constraints. The sunk-

ness (i.e., low liquidation value) of intangible assets imposes tighter liquidity con-

straints on intangible scientists relative to their tangible counterparts. The emergence

of VC, however, could relax these constraints by providing external financing better

suited for intangible ventures. Before ERISA, with limited collateral, borrowing from

banks would have been challenging. After ERISA, the financial constraints faced by

intangible scientists relaxed owing to the availability of equity investment.

To formalize the alleviation of financial constraints, I now present a theoretical

framework that builds on the borrowing constraints and selection into entrepreneur-

ship of Evans and Jovanovic (1989), calibrated to quantify the changes in borrowing

constraints before and after ERISA.
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6.1 Model Setup

Each intangible scientist in the model is endowed with a level of wealth, denoted by

a, which is interpreted as net family assets. Due to financing constraints, individuals

can invest at most k = λa in entrepreneurial activities, where λ captures the effective

borrowing limit. A higher λ implies greater access to external capital per unit ofwealth.

In addition to wealth, each individual possesses an idiosyncratic entrepreneurial

ability z, which determines the productivity of capital in entrepreneurship. A higher

value of z implies a greater total and marginal return to investment. I assume that

log(z) is normally distributed. One thing to note is that z is uncorrelated with a (Evans

and Jovanovic, 1989).

Individuals also face a wage opportunity w, representing the income they would

earn if they remained in salaried employment. The occupational choice is static and

discrete: an individual chooses entrepreneurship if the expected net return exceeds

the wage alternative. The net profit from entrepreneurship is given by

max
k∈[0,λa]

π(z, k, a) = zkα − r(k − a),with 0 < α < 1, r > 0,

where α is the elasticity of output with respect to capital and r is the gross interest

rate on external funds. The first term captures gross revenue as a Cobb-Douglas func-

tion of capital and ability; the second term reflects the cost of financing in excess of own

wealth.

6.2 Model Results

The individual chooses entrepreneurship if π(z, λ, a) ≥ w + ra. First consider the

choice of k for the entrepreneur:

F.O.C kα−1 − r = 0

The optimal k∗ is
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k∗ =
(αz

r

) 1
1−α

The entrepreneur will be unconstrained whenever the optimal k∗ is below λa, i.e.

z ≤ r
α
(λa)1−α

Solving for the ability threshold below and above r
α (λz)1−α respectively:

w1−α
( r

α

)α
(1 − α)α−1 ≤ z ≤ (λa)1−α

( r
α

)
(1’)

or

z > max
[
(λa)1−α

( r
α

)
, w(λa)−α + r(λa)1−α

]
(2’)

If z satisfies either constraint, the individual chooses entrepreneurship.

The central parameter in thismodel is λ, which determines the financial constraints.

A higher λ value imposes higher financial constraints and reduces the entrepreneurial

entry decision.

6.3 Model Calibration and Implication

The calibration is to find λs that match the entry rate of scientists pre and post ERISA,

respectively. The parameters are summarized in Table 8. Whenever available, I use

values from the literature.

The capital output elasticity α primarily functions to define the shape of the en-

trepreneurial production function and the diminishing returns to capital, yet it is hard

to map to empirical data. The capital referred to in the model is the amount invested in

the business, not physical or intangible capital. The gross interest rate r equals 1.107,

which is from the 10-year real interest rate of 7.7% in 1982with 3% spread. Pre and post

ERISA borrowing limits are recovered one-for-one from the observed entry rates before

and after the regulatory shock. w wage is the gross annual income as self-reported by
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the scientists in the NRSTP.

Figure 10 plots the model-predicted entry probability against (log) wealth for the

calibrated λ̂s. The two lines represent the relationshipwith calibrated λ̂s before and af-

ter the ERISA shock. It shows that ERISA relaxed the financial constraints of intangible

scientists by 83.8% through the increase of λ.

Although λ̂ is an informative measure of the fraction of wealth that can be exter-

nally financed, it should be interpreted with caution. The estimate rests on simplify-

ing assumptions about the distribution of entrepreneurial ability, represents VC solely

through borrowing limits, and ignores possible interactions between wage and ability.

These abstractions may overlook important aspects of real-world entry decisions.

Subject to these caveats, the results highlight the potency of VC in easing finan-

cial frictions: despite the market’s small size in 1980, the reform substantially lowered

scientists’ entry barriers. This suggests that regions such as Europe could unlock con-

siderable entrepreneurial potential if pension-fund regulations on VC investment were

similarly relaxed.

7 Conclusion

This paper contributes to the growing literature on technology entrepreneurship by

demonstrating that an expanded supply of VC can incentivize scientists to create busi-

nesses. Exploiting the 1979 ERISA shock to the VC supply, I show that the rate of busi-

ness formation among scientists doubled, and was especially significant among scien-

tists with intangible specialties. This is because VC alleviates the financing constraints

for scientists whose projects lack collateral and in which traditional banks are typically

unwilling to invest.

I further investigate the heterogeneity underlying the main results. I find that sci-

entists employed in the private sector exhibited a greater responsiveness to the VC

supply shock compared to those affiliated with universities. Private scientists with

a higher annual gross income and with prior patenting activity were more likely to
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spin out. These findings suggest that VC encourages high-quality startups. Through

county-industry-level analysis, I demonstrate that these effects ultimately impact real

outcomes. Intangible industries in the counties with a VC presence growmore in terms

of firm counts and number of employees. To rationalize these empirical findings, I use

a simple framework in which scientists decide between remaining wage earners and

becoming entrepreneurs. I then calibrate the financial constraints and quantify how

VC alleviates them.

This paper has clear policy implications. Governments are increasingly turning

to policies to improve access to financing for private firms. VC plays an important

role as a specialized financial intermediary in incentivizing technology entrepreneur-

ship, yet the policy tools usually center around publicly-backed venture capital and

tax incentives for equity investors. The results in this paper show that the allocation of

pension funds to VCs can incentivize high-quality technology entrepreneurship. This

resonates with the ongoing debate over increasing pension fund allocations to VC in

the United Kingdom.19 By exploiting the 1979 ERISA reform, which permitted pri-

vate pension funds to invest in VC, I show that such policy changes can produce sub-

stantial spillover effects, prompting scientists to establish new ventures and catalyze

innovation-led growth.

19https://sifted.eu/articles/pension-reforms-uk-investment-news. Last retrieved on August 25, 2025.
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Figures

Figure 1: Examples of the Raw Data

((a)) AWS ((b)) NRSTP: Entries

((c)) NRSTP: Work Specialty Codebook ((d)) NRSTP: University Codebook

Notes: (a) is an example of an AMS entry. Dr. Malcolm J. Abzug (April 13, 1920),
an expert in space and flight mechanics, held prominent roles in aerodynamics, mis-
sile systems, and space research. Educated at MIT (Bachelor), Polytechnic Institute of
Brooklyn (Master’s), and UCLA (PhD), he contributed significantly to Douglas Air-
craft Co. and U.S. Air Corps. His research focused on flight mechanics, fluid mechan-
ics, and control systems. (b) shows the raw dataset from the NRSTP. Each line repre-
sents one scientist’s entry. The dataset is structured so that different positions within a
row correspond to different variables. Each variable is encoded using specific numer-
ical or categorical codes, where the position of the code determines which variable it
represents. (c) and (d) display the original codebooks of the NRSTP. These codebooks
serve as reference documents that map each code in the dataset to its corresponding
meaning. When the ORC could not accurately identify certain words, a large language
model was used to fill in missing or incorrectly spelled letters.
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Figure 2: Geographical Distribution of the Scientists and Engineers

Notes: This figure plots the geographical distribution of the scientists, using county
delineations from the 1990 census. The historical county FIPS crosswalk follows Eckert
et al. (2020). The scientist counts are weighted to account for differences in population
weights between 1990 and 2010. For visualization purposes, the color scale is capped
at 400. Counties with more than 400 scientists are represented using the same color as
those with exactly 400 scientists.
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Figure 3: Business Formation Trend in the U.S.

Notes: This figure plots the number of businesses incorporated in the U.S. and those
founded by scientists. The data is from OpenCorporates. Business formation counts
are normalized to 1978 (set to 1) for comparison. The total U.S. business formation
includes all newly incorporated businesses, while scientist-founded businesses refer
to firms established by individuals with a scientific background. The data includes
only business registrations where both the officers’ names and company addresses are
available.
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Figure 4: Effects of VC on Scientists’ Entrepreneurial Entry

Notes: This figure displays the coefficient of year indicator variables interacted with the
intangible specialty. The specification is from the difference-in-differences estimation
from Column (2) in the Table 3. The vertical lines represent the 95% confidence inter-
vals for the coefficient estimates.

42



Fi
gu

re
5:

H
et
er
og

en
eo

us
Eff

ec
to

n
Sc
ie
nt
is
ts
’E

nt
re
pr
en

eu
ria

lE
nt
ry

by
Ty

pe
of

Em
pl
oy

er

N
ot
es
:T

hi
sfi

gu
re

di
sp

la
ys

th
ec

oe
ffi
ci
en

ts
fr
om

th
ed

iff
er
en

ce
-in

-d
iff
er
en

ce
se

st
im

at
io
n
of

C
ol
um

ns
(1
)a

nd
(2
)i
n
Ta

bl
e4

.I
ti
llu

st
ra
te
s

th
e
he

te
ro
ge

ne
ou

s
tr
ea
tm

en
te

ffe
ct
s
ba

se
d
on

th
e
ty
pe

of
em

pl
oy

er
fo
rs

ci
en

tis
ts

an
d
en

gi
ne

er
s.

Th
e
ve

rt
ic
al

lin
es

re
pr
es
en

tt
he

95
%

co
nfi

de
nc

e
in
te
rv
al
sf
or

th
e
co
effi

ci
en

te
st
im

at
es
.

43



Figure 6: Intangible Employee Share and Spinout Rate at Firm Level

Notes: This figure displays the correlation between the spinout rate and its share of
intangible (or tangible) employees at firm level. The share of intangible employees is
defined as the number of intangible scientists divided by the total number of scientists
in my data sample at the firm. Each dot shows the mean of firms whose observations
fall within the corresponding bin. The green line represents the fitted values from a
simple firm-level OLS regression with the spinout rate as the outcome variable and the
share of intangible (or tangible) employees as the explanatory variable.
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Figure 9: Effects of VC on Industry Size

Notes: These figures display the coefficients from the difference-in-differences estima-
tion in Table 7. The subfigure on the Number of Employees is from Columns (3)
and (4). The subfigure on the Number of Establishments with 1-4 Employees is from
Columns (7) and (8). The figures illustrate that the treatment effects of VC are pre-
cisely in the places where there was VC investment and which had limited spillover to
other counties. The vertical lines represent the 95% confidence intervals for the coeffi-
cient estimates. 47



Figure 10: Financial Constraints and Business Formation Rate

Notes: This figure illustrates the implied entry probability as a function of wealth a,
displayed on a logarithmic scale for the x-axis. The blue line represents λpre and the
green line represents λpost. ERISA relaxed the financial constraints and increased λ.
The required parameters were calibrated to the values in Table 8.
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Tables

Table 1: Summary Statistics on Business Formation, Patenting, and Publication

Statistic Count Min 50% Mean 95% 99% Max Std. Dev.
StartBusiness 458,703 0 0 0.03 0 1 1 0.17
BizCount 458,703 0 0 0.06 0 1 57 0.55
FilePatent 458,703 0 0 0.09 1 1 1 0.28
PatCount 458,703 0 0 0.37 1 8 356 2.75
HasPublication 458,703 0 0 0.10 1 1 1 0.29
PaperCount 458,703 0 0 2.12 7 53 1,273 15.11
Intangible Score 458,703 0.52 0.79 0.79 0.84 0.87 0.89 0.04
Tangible Score 458,703 0.51 0.78 0.78 0.89 0.95 0.95 0.05
Gross Income 370,120 100 12000 13186.12 25000 40000 99900 7719.46

Notes: This table presents the summary statistics of the variables related to the patenting
and publication activities of scientists. All variables are at the individual level. BizCount
represents the number of businesses formed by a scientist. StartBusiness equals one if a
scientist started at least one firm. PatCount is the number of patents onwhich the scientist
is listed as an inventor. FilePatent equals one if a scientist filed at least one patent. Paper-
Count is the number of journal publications authored by the scientist. HasPublication
equals one if a scientist published at least one journal article. Intangible Score and Tan-
gible Score are calculated based on the textual similarity between the work specialty of
the scientists and the tangible and intangible dictionaries. Gross income is self-reported
in the NRSTP.
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Table 2: Top Intangible and Tangible Specialties

Tangible Specialties Intangible Specialties
Mechanical engineering Operations research
Electrical engineering Theory and practice of computation
Chemical engineering Mathematics of resource use
Plastics engineering Operations analysis
Aerospace engineering Communication science
Civil engineering Project management and control
Textile engineering Epidemiology
Materials engineering Evolution
Electronics engineering Information system design
Metallurgical engineering Statistics

Notes: The table reports the top intangible and tangible scientific specialties based
on textual similarity. Mechanical engineering has the highest difference between
the tangible and intangible scores, indicating that it is highly tangible. In contrast,
theory and practice of computation has the lowest difference between the tangible
and intangible scores, suggesting it is the most intangible specialty.

50



Table 3: Effect of VC on Scientists’ Entrepreneurial Entry

Dependent Variable: 100 · 1 [StartBusinesst | NoBusinesst−1]
(1) (2) (3) (4)

Post1979 × Intangible 0.0329∗∗∗ 0.0215∗∗∗ 0.0213∗∗∗ 0.0506∗∗∗
(0.0069) (0.0069) (0.0069) (0.0074)

Intangible 0.0158∗∗∗ 0.0145∗∗∗ 0.0144∗∗∗
(0.0038) (0.0038) (0.0038)

Post1979 0.0602∗∗∗ 0.0395∗∗∗
(0.0043) (0.0042)

Constant 0.0744∗∗∗ 0.0720∗∗∗
(0.0025) (0.0025)

Control Yes Yes Yes
Year FE Yes Yes
Individual FE Yes
Observations 4,250,561 4,250,561 4,250,561 4,250,561
R2 0.00015 0.00043 0.00045 0.15388

Notes: This table reports the difference-in-differences estimates of the ERISA effect on
business formation by scientists from 1970 to 1986. The dependent variable is a bi-
nary indicator of whether a scientist started a business in a given year. Intangible is a
binary variable indicating whether the scientist’s work specialty is classified as intan-
gible based on the LLM classification. Post1979 equals one for years after 1978. All
specifications include individual fixed effects and year fixed effects. Standard errors
are clustered at the individual level. * p < .10, ** p < .05, *** p < .01.
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Table 4: Heterogeneous Effect on Scientists’ Entrepreneurial Entry byType of Employer

Dependent Variable: 100 · 1 [StartBusinesst | NoBusinesst−1]
(1) (2) (3) (4)

Private
Industry

College and
University

Federal
Government

Self
Employed

Post1979 × Intangible 0.1828∗∗∗ 0.0053 0.0392 0.0376
(0.0171) (0.0125) (0.0331) (0.0775)

Control Yes Yes Yes Yes
Individual FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Observations 1,577,200 1,245,118 183,766 78,078
R2 0.13808 0.12890 0.11920 0.11963

Notes: This table reports the difference-in-differences estimates of the ERISA effect on
business formation by scientists from 1970 to 1986. The sample is split based on the
type of employer. The type of employer is divided into four categories: private indus-
try when the scientist works for a for-profit firm, college and university, federal govern-
ment civilian employee, and self-employed. The dependent variable is a binary indica-
tor ofwhether a scientist started a business in a given year. Intangible is a binary variable
indicating whether the scientist’s work specialty is classified as intangible based on the
LLM classification. Post1979 equals one for years after 1978. All specifications include
individual fixed effects and year fixed effects. Standard errors are clustered at the indi-
vidual level. * p < .10, ** p < .05, *** p < .01.
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Table 5: Heterogeneous Effect on Scientists’ Entrepreneurial Entry by Wage

Dependent Variable: 100 · 1 [StartBusinesst | NoBusinesst−1]

Panel A: Scientists Working in Private Industry or Sector
(1) (2) (3) (4)
Q1 Q2 Q3 Q4

Post1979 × Intangible 0.0841∗∗∗ 0.0997∗∗∗ 0.2083∗∗∗ 0.2561∗∗∗
(0.0317) (0.0332) (0.0370) (0.0368)

Control Yes Yes Yes Yes
Individual FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Observations 373,070 331,704 340,646 341,314
R2 0.15877 0.14569 0.13976 0.16011

Panel B: Scientists Working for Colleges or Universities
(5) (6) (7) (8)
Q1 Q2 Q3 Q4

Post1979 × Intangible -0.0357 -0.0009 0.0358 -0.0226
(0.0240) (0.0259) (0.0269) (0.0318)

Control Yes Yes Yes Yes
Individual FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Observations 238,763 268,001 305,496 295,606
R2 0.14527 0.13549 0.15381 0.15780

Notes: This table presents difference-in-differences estimates of the impact of the 1979
ERISA reform on business formation by scientists over the period 1970–1986. The
sample is stratified by quartiles of self-reported gross income, defined separately for
private-sector and university-employed scientists. For scientists in the private sector,
the gross income quartile thresholds are $100 (0th percentile), $10,000 (25th), $13,200
(50th), $17,400 (75th), and $99,900 (100th). For university scientists, the correspond-
ing thresholds are $100 (0th percentile), $7,500 (25th), $11,000 (50th), $15,000 (75th),
and $99,900 (100th). The dependent variable is a binary indicator of whether a scien-
tist started a business in a given year. Intangible is a binary variable indicating whether
the scientist’s work specialty is classified as intangible based on the LLM classification.
Post1979 equals one for years after 1978. All specifications include individual fixed ef-
fects and year fixed effects. Standard errors are clustered at the individual level. * p <
.10, ** p < .05, *** p < .01.
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Table 6: Heterogeneous Effect on Scientists’ Entrepreneurial Entry by Employee Pro-
ductivity

Dependent Variable: 100 · 1 [StartBusinesst | NoBusinesst−1]

Panel A: Scientists Working in Private Industry or Sector
(1) (2) (3) (4)

Has Patent No Patent Has
Publication

No
Publication

Post1979 × Intangible 0.8017∗∗∗ 0.1994∗∗∗ 0.4341∗∗∗ 0.2120∗∗∗
(0.1134) (0.0171) (0.1471) (0.0172)

Control Yes Yes Yes Yes
Individual FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Observations 289,261 1,273,806 30,589 1,532,478
R2 0.14593 0.14937 0.14839 0.14851

Panel B: Scientists Working for Colleges or Universities
(5) (6) (7) (8)

Has Patent No Patent Has
Publication

No
Publication

Post1979 × Intangible 0.9052∗∗∗ 0.0097 0.0156 0.0110
(0.2261) (0.0122) (0.0326) (0.0134)

Control Yes Yes Yes Yes
Individual FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Observations 25,165 1,237,517 229,379 1,033,303
R2 0.15228 0.15046 0.15573 0.14881

Notes: This table reports the difference-in-differences estimates of the ERISA effect on
business formation by scientists from 1970 to 1986. The sample is split based on the
type of employer and whether the scientists filed a patent or published a journal article
before 1979. The dependent variable is a binary indicator of whether a scientist started
a business in a given year. Intangible is a binary variable indicating whether the scien-
tist’s work specialty is classified as intangible based on the LLM classification. Post1979
equals one for years after 1978. All specifications include individual fixed effects and
year fixed effects. Standard errors are clustered at the individual level. * p < .10, ** p <
.05, *** p < .01.
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Table 7: Effect of VC on Industry Size

Panel A: Employment

Dependent Variable: Number of Employees
(1) (2) (3) (4)

Full Sample VC County Non VC
County

Post1979 × Intangible 85.82∗∗∗ 106.2∗∗∗ 592.0∗∗∗ 28.70∗∗∗
(9.580) (10.67) (68.31) (2.297)

Industry FE Yes Yes Yes Yes
Year FE Yes
County FE Yes
Year-County FE Yes Yes Yes
Observations 990,668 990,668 136,564 854,104
R2 0.35723 0.36191 0.40690 0.22228

Panel B: Establishments

Dependent Variable: All Sizes 1-4 Employees
(5) (6) (7) (8)

VC County Non VC
County

VC County Non VC
County

Post1979 × Intangible 32.25∗∗∗ 1.847∗∗∗ 16.44∗∗∗ 0.8349∗∗∗
(3.445) (0.0935) (2.099) (0.0558)

Industry FE Yes Yes Yes Yes
Year-County FE Yes Yes Yes Yes
Observations 136,564 854,104 136,564 854,104
R2 0.40348 0.37004 0.35618 0.33564

Notes: This table reports the difference-in-differences estimates of the ERISA effect on
industry size from 1974 to 1986. VC County represents a subsample with counties
that had at least one VC investment during 1979-1986. Non VC County is the oppo-
site. Number of Employees is the number of paid employees during the payroll period.
Establishments is the number of establishments with paid employees, categorized by
employment-size class (e.g., 1–4 employees). Intangible is a binary variable indicating
whether the industry is classified as intangible. Post1979 equals one for years after 1978.
Standard errors are clustered at the county level. * p < .10, ** p < .05, *** p < .01.
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Table 8: Calibrated Parameters and Values

Parameter Description Value
α Return to scale of the production process 0.75
r Rate of return 1.18
w Average annual gross income 16556.27
µa Mean of log wealth 8.91
σa Std. of log wealth 1.41
µz Mean of entrepreneurial ability 2.00
σz Std. of entrepreneurial ability 0.90

This table presents the values used for the model calibration. µa and σa are derived
from net family assets in the 1976 survey (Evans and Jovanovic, 1989) where the
mean and standard deviation of family assets are reported. Assume family assets X
is log-normally distributed and Y = ln X. Let µ and σ denote the mean and standard
deviation of X. Then the variance of Y is σ2

ln = ln
(
1 + σ2/µ2) and its mean is µln =

ln µ − 1
2 σ2

ln. With µ = 20,009.2 and σ = 50,053.3 from the paper, I obtain σln ≈ 1.41
and µln ≈ 8.91.
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Online Appendix for

“Venture Capital and Scientists’ Selection into Entrepreneurship”

Xuelai Li

September 2025

Construction of Specialty Dictionaries

The tangible and intangible specialty dictionaries are constructed using GPT (includ-

ing o3 and o4-mini). Firms are double-sorted using COMPUSTAT data based on the

share of intangible assets and the capital expenditure-to-assets ratio. Company de-

scriptions and financials of the top 100 firms at each extreme are extracted and saved

as separate files. The GPT prompt is:

You are provided with three files:

tangible_companies.csv – Descriptions of the top tangible companies of

the 1980s.

intangible_companies.csv – Descriptions of the top intangible companies

of the 1980s.

specialty.csv – A list of scientists’ specialties, one specialty per

line.

Task

1. From specialty.csv, select 20 specialties most relevant to

tangible_companies.csv.

2. From specialty.csv, select 20 specialties most relevant to

intangible_companies.csv.

3. Base the relevance on how closely each specialty aligns with the

companies’ technologies and products.

4. Ensure all 40 chosen specialties are unique (no duplicates across the
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two lists).

Output

Return only the following Python lists, without comments or explanations.

Appendix Figures

Figure A1: Original Document of the ERISA Reform in 1979

Notes: This graph shows Title 29 of the U.S. Code of Federal Regulations Part 2550
of 1979. This is the final regulation on the "Rules and Regulations for Fiduciary Re-
sponsibility; Investment of Plan Assets Under the ’Prudence’ Rule". The amendment
was published in the Federal Register on June 26, 1979. Federal agencies typically be-
gin drafting amendments well before the public discussion. The discussions within
the Department of Labor (DOL) regarding fiduciary investment duties likely started
as early as 1978. The DoL would publish a Notice of Proposed Rulemaking (NPRM)
in the Federal Register to inform the public of the proposed changes and invite com-
ments. This step often occurs 6–18 months before the final rule is published. For the §
2550.404a-1 amendment, the NPRM likely appeared in the Federal Register in late 1978
or early 1979. Following the NPRM, there would have been a public comment period
(typically 30–90 days) during which stakeholders could provide feedback. After the
comment period, the DOL would review the feedback, potentially revise the proposal,
and prepare the final rule for publication.
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Figure A2: VC Investment and ERISA Reform

Notes: This figure plots the total amount of VC investment and the number of deals in
the U.S. Note that these values are underestimated due to incomplete data coverage
in the dataset, as many of the deals did not disclose the deal sizes. The data comes
fromVenture Economics, a database focusing on the venture capital and private equity
sectors. The database includes fields such as investors, invested startups, and fund
profiles. This is the only database that covers the VC and PE deals in 1970s, making
it a valuable resource for the analysis in this study. Many foundational papers in the
entrepreneurial finance literature use this database (Kortum and Lerner, 2000; Ewens
et al., 2018).
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Figure A3: Birth Year of the Scientists

Notes: This figure plots the distribution of scientists’ birth years. The birth year is self-
reported in the AMS data. Since this information is not reported in the NRSTP data,
the birth year of scientists recorded in the NRSTP is calculated based on the year and
level of the highest degree.
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Figure A4: Patents and Publications by Scientists

Notes: This figure plots the number of granted patents filed and published papers by
scientists in my data sample over the years. The dataset includes only patents that
were granted; applications that did not result in a grant are not observed. Only papers
published in journals are included as publications.
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Figure A5: Early-Stage VC Deals by Industry

Notes: This figure plots the number of VC deals from 1960 to 1990 based on the two-
digit SIC codes. The top five industries by deal count in 1990 are selected. The data is
from Venture Economics.
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Figure A6: Difference between Tangible and Intangible Scores

Notes: This figure plots the tangible and intangible scores for each specialty. Each point
represents a unique scientist, with their scores derived from their work specialty. The
45-degree dashed lines represent boundaries where the difference between the intangi-
ble and tangible scores equals the first and third quartiles of the empirical distribution.
The red line corresponds to the 75th percentile of the difference (intangible minus tan-
gible), while the blue line denotes the 25th percentile.

63



Figure A7: Negative Credit Shock to Scientists’ Entrepreneurial Entry

Notes: This figure plots the estimated coefficients from the event study based on
Equation BusinessFormationist = βDeregulationst + ηi + ηt + ϵist. Deregulationst is a
dummy variable that equals one in the year following the implementation of intrastate
banking deregulation in a given state. Since intrastate banking deregulation included
both M&A and de novo deregulation, I follow the previous literature (Chava et al.,
2013; Jayaratne and Strahan, 1996) in classifying a state as “intrastate deregulated” in
the year after either M&A or de novo deregulation occurred. The green lines represent
estimates based on Callaway and Sant’Anna (2021), which report group-time average
treatment effects using never-treated units as the control. The blue lines are based
on Sun and Abraham (2021), which present event-time treatment effects using never-
treated or not-yet-treated units as the control. The results highlight the heterogeneous
effects of intrastate bank deregulation on business formation across different special-
ties. The vertical lines denote 95% confidence intervals for the coefficient estimates.
The results indicate a negative impact of intrastate bank deregulation on business for-
mation among scientists with tangible specialties. Specifically, the estimated average
treatment effect (ATT) of scientists is -0.137, with a standard error of 0.0167 based on
Callaway and Sant’Anna (2021).
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Appendix Tables

Table A1: Level and Year of Highest Degree by Data Source

Level of Highest Degree Count
Bachelor 142,242
Master’s 130,488
MD 10,996
PhD 160,082
PhD+ 2,336

Notes: Compared to AMS, the NRSTP offers a broader view of the workforce. The
NRSTP covers a wider range of fields and is more oriented toward workforce anal-
ysis, while AMS emphasizes individual recognition and contributions within the
scientific community. AMS primarily includes renowned scientists, most of whom
are affiliatedwith universities and hold PhDs. In contrast, theNRSTP encompasses
a broader group of individuals engaged in R&D activities, many of whommay not
possess advanced degrees. PhD+ means that the person has more than one PhD
degree, or has both PhD and MD degrees.
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Table A2: Institution of Highest Degree

University of Highest Degree Count
University of Michigan-Ann Arbor 10,480
Columbia University in the City of New York 10,060
Harvard University 9,728
University of California-Berkeley 8,302
New York University 7,756
Purdue University 7,529
University of Wisconsin 7,499
Ohio State University 7,378
Massachusetts Institute of Technology 7,287
University of Chicago 7,142

Notes: This table reports the institution of the highest degree of the scientists and
engineers in my sample. Universities within the University of California system
have missing values because many records only include the UC system but do not
specify the specific campus attended.
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Table A3: Average Pre-Tax Income by Income Quantiles ($ 2018)

Quantile NRSTP PSZ
Bottom 50% 42,061 13,761
Middle 40% 81,616 40,050
Top 10% 124,817 132,719
Top 5% 164,118 193,714
Top 1% 249,437 472,005
Top 0.5% 344,038 687,512
Top 0.001% 520,178 20,274,790

Notes: This table shows the scientists’ income distribution and compares it with
that of the general U.S. population. The PSZ data is from the 2022 version of
TB3 from Distributional National Accounts by Piketty et al. (2018): https://gabriel-
zucman.eu/usdina/. Last retrieved on August 25, 2025.
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Table A4: Type of Employer

Employment Sector Count
Private Industry or Business 171,484
College or University 138,280
State, Local, or Other Government (except educational institution) 39,647
Federal Government Civilian Employee 27,968
Other Educational Institution 15,421
Military Service, Active Duty 11,529
Nonprofit Organization 10,913
Self-Employed 9,162
Other 2,167

Notes: This table reports the types of employers for the scientists and engineers
in my sample. Over the years, the classification of employer type has become
increasingly granular. I manually create a crosswalk file to harmonize these
classifications. In 1970, the category “State, local, or other government (except
educational institution)" included entities such as the USPHS Commissioned
Corps, U.S. Weather Bureau, State Government, International Agencies, and
Other Government Agencies. Research centers managed by for-profit organiza-
tions are classified under “Private Industry or Business," while those managed
by educational institutions are classified as “College or University."
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Table A5: Top Employers of Scientists and Engineers

Firm Name NAICS Industry Name Count
DuPont de Nemours, Inc. Chemical Manufacturing 4,792
International Business Machines Computer and Electronic Product 3,198
Union Carbide Corp Chemical Manufacturing 3,110
General Electric Company Electrical Equipment 2,674
Shell Oil Co. Petroleum and Coal Products 2,228
Dow Chemical Company Chemical Manufacturing 2,011
Monsanto Co Chemical Manufacturing 1,653
Humble Oil & Refining Co Petroleum and Coal Products 1,348
North American Rockwell Aerospace Product and Parts 1,311
Eastman Kodak Co Photographic and Optical Equipment 1,165
Mobil Oil Corp Petroleum and Coal Products 1,130
Lockheed Aerospace Product and Parts 1,095
Texaco Inc Petroleum and Coal Products 1,093
Allied Chemical Corp Chemical Manufacturing 1,089
Esso Chem Co Inc Chemical Manufacturing 1,065
Westinghouse Electric Corp Electrical Equipment and Component 1,035
Phillips Petroleum Co. Petroleum and Coal Products 990
American Cyanamid Co Chemical Manufacturing 976
Bell Telephone Company Telecommunications 971
Boeing Company Aerospace Product and Parts 948
Radio Corporation of America Broadcasting and Communications 928
Gulf Oil Corp Petroleum and Coal Products 857
Chevron Corporation Petroleum and Coal Products 847
Hercules Inc Chemical Manufacturing 840
3M Company Miscellaneous Manufacturing 705
Battelle Memorial Institute Research and Development Services 692
McDonnell Douglas Aircraft Aerospace Product and Parts 688
Standard Oil Co Petroleum and Coal Products 688
Pan American World Airways Air Transportation 673
Sperry Rand Corp Computer and Electronic Product 671

Notes: This table shows the top employers of the scientists and engineers in my sample.
I standardize and consolidate information on mergers and acquisitions (M&As) by
aligning historical corporate entities with their post-merger counterparts. Firms that
merged before 1972, such as North American Rockwell Corporation (1967) and Mc-
Donnell Douglas Aircraft Corporation (1967), were identified and recorded to main-
tain historical accuracy. Similarly, post-1972 M&As, including Lockheed Martin Cor-
poration (1995) and Northrop Grumman Corporation (1994), were documented by
tracing their predecessor firms.
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Table A6: First Specialty of Work

Specialty Count
Organic Chemistry 47,178
Agricultural and Biological Sciences 36,514
Geology 23,054
Analytical Chemistry 18,728
Physical Chemistry 16,581
Related Chemical Specialties 13,842
Theory and Practice of Computation 13,733
Clinical Psychology 11,740
Biochemistry 11,288
Inorganic Chemistry 8,661
Chemistry 7,751
Probability and Statistics 6,857
Chemical Engineering 6,828
Solid State Physics 6,556
Nuclear Physics 5,350
Forestry 4,862
Optics 4,836
Civil Engineering 4,822
Mathematics of Resource Use 4,801
Electronics 4,580

Notes: This table reports the work specialties of the scientists and engineers in
my sample. The data comes from both NRSTP and AMS. The NRSTP data origi-
nates from the “Professional Characteristics" section of the questionnaire, where
respondents were asked to identify the specialties in which they believed they
had demonstrated professional competence in research. While the classification
of work specialties aligns with the categorization of academic majors, it provides
a more detailed structure, incorporating multiple hierarchical levels of specialties
for greater granularity. The AMS data comes from the list of academic disciplines
provided by AMS.
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Table A7: Correlation Matrix

StartBusiness FilePatent HasPublication Tangible Score Intangible Score Gross Income isMale
StartBusiness 1.000
FilePatent 0.048 1.000
HasPublication 0.019 -0.017 1.000
Tangible Score 0.004 0.075 -0.076 1.000
Intangible Score 0.018 -0.123 -0.027 0.361 1.000
Gross Income 0.058 0.165 0.099 -0.037 -0.012 1.000
isMale 0.032 0.079 0.006 0.114 0.005 0.143 1.000

Notes: This table presents the correlation matrix between key variables in Table 1 and gender information. All variables are at
the individual level. StartBusiness equals one if a scientist started at least one firm. FilePatent equals one if a scientist filed at
least one patent. HasPublication equals one if a scientist published at least one journal article. Intangible Score and Tangible
Score are calculated based on the textual similarity between thework specialty of the scientists and the tangible and intangible
dictionaries. Gross income is self-reported in the NRSTP. Gender is either self-reported or guessed based on the first name.71



Table A8: Dictionary of Tangible and Intangible Specialties with GPT o3

Tangible Specialties Intangible Specialties
Mechanical Engineering Business Finance and Administration
Electrical Engineering Industrial Organization
Industrial Engineering Economic Systems
Chemical Engineering Theory and Practice of Computation
Materials Engineering Business Data Processing
Metallurgical Engineering Computer Science
Civil Engineering Information Science
Aerospace Engineering Patent Law
Mining and Petroleum Engineering International Law
Food Science and Technology International Economics
Forest Products Project Management and Control
Food Packaging Industrial and Personnel Psychology
Agricultural Engineering Social Change and Development
Electronic Engineering Economic Growth and Development
Environmental Engineering General Economics
Process Engineering Operations Research
Product Engineering Systems Engineering
Industrial Hygiene Demography and Population
Sanitary Engineering Computer Hardware Design
Communications Engineering Communications

Notes: The table reports the specialty dictionaries constructed using GPT o3 based
on company descriptions from COMPUSTAT. Firms are double-sorted by their
share of intangible assets and the capital expenditure-to-assets ratio. The top 100
firms at each extreme are used to generate the tangible and intangible dictionaries.
Some specialty names are abbreviated for formatting purposes.
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Table A9: Dictionary of Tangible and Intangible Specialties with GPT o4-mini

Tangible Specialties Intangible Specialties
Mechanical Engineering Communications Engineering
Electrical Engineering Research Administration
Chemical Engineering Information Science
Civil Engineering Information System Design
Industrial Engineering Information Retrieval
Materials Engineering Computer Science
Metallurgical Engineering Computer Hardware Design
Polymer Science Business Organization
Ceramics Management
Geology Project Management and Control
Geophysics Business Data Processing
Petroleum Engineering Theory and Practice of Computation
Food Science and Technology Probability and Statistics
Biomedical Engineering Land Economics
Electronics International Economics
Solid State Physics Labor Economics
Electricity and Magnetism Economic Growth and Development
Engineering Mechanics Welfare Programs
Design Engineering Hospital Administration
Environmental Engineering Industrial Organization

Notes: The table reports the specialty dictionaries constructed using GPT o4-mini
based on company descriptions from COMPUSTAT. Firms are double-sorted by
their share of intangible assets and the capital expenditure-to-assets ratio. The top
100 firms at each extreme are used to generate the tangible and intangible dictio-
naries. Some specialty names are abbreviated for formatting purposes.
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Table A10: Scientists’ Work Specialty Tangibility Status (1962 vs. 1968)

Intangible in 1968
Intangible in 1962 0 1
0 7,709 138
1 1,050 6,034

Notes: This table presents the confusion matrix comparing the work specialties of
the same scientists who appear in both the 1962 NRSTP survey and the 1968 survey.
Scientists may change their work specialty over time, but the tangibility of each work
specialty is time-invariant. The values represent the counts of observations transi-
tioning between categories. Scientists whose work specialty changed from 1 to "not
able to define" were dropped.
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Table A11: Differences between Tangible and Intangible Scientists

Variable Tangible Intangible Diff in Mean t-statistic
Female 0.146 0.064 0.082 66.703
Year of Highest Degree 1955.837 1952.907 2.930 67.858
Basic Salary 13037.608 12925.898 111.710 4.042
Gross Income 13959.789 13264.311 695.478 20.432
Govt. Agriculture 0.022 0.068 -0.047 -58.263
Govt. Atomic Energy 0.019 0.028 -0.009 -14.724
Govt. Defense 0.116 0.072 0.044 37.414
Govt. Education 0.096 0.040 0.057 55.596
Govt. Natural Resources 0.011 0.038 -0.026 -43.588
Govt. Space 0.047 0.033 0.014 17.750
EmployerFirm 0.232 0.482 -0.250 -136.527
EmployerGov 0.057 0.039 0.018 20.633
EmployerMil 0.014 0.015 -0.001 -1.526
EmployerUni 0.417 0.196 0.221 122.622

Notes: The table reports the average differences between scientists with tangi-
ble and intangible specialties. Basic Salary andGross Income are self-reported in
the NRSTP.Govt. Agriculture indicates sponsorship by government agriculture
programs, with similar definitions for Govt. Atomic Energy, Govt. Defense,
Govt. Education, Govt. Natural Resources, and Govt. Space. EmployerFirm
refers to scientists employed by private industry or business. EmployerGov de-
notes federal government civilian employees. EmployerMil represents military
service personnel, and EmployerUni includes those in active duty at colleges or
universities.

75



Table A12: Employers with the Top Shares of Scientists with Intangible and Tan-
gible Work Specialties

Intangible Specialties Tangible Specialties
Informatics Inc Climax Molybdenum Co
Wyatt Co Fritzsche Brothers Inc
Applied Data Research Inc Detrex Chemical Industries Inc
Brookings Inst Dexter Corp
Milliman & Robertson Inc Sonoco Products Co
Computer Assoc Inc Richardson Co
Scientific Data Systems Schenectady Chem Inc
Computer Control Co Drew Chemical Corp
Philip Hankins & Co Inc Homestake Mining Co
Computing & Software Inc Cosden Oil & Chem Co
Arthur Andersen & Co Pennzoil Co
American Inst for Research Ashland Oil
Touche Ross Bailey & Smart Congoleum Nairn Inc
Data Dynamics, Inc. Devoe & Raynolds Co Inc
Pacific Mutual Life Insurance Co Travenol Labs Inc
Humrro Westreco Inc
Austen Riggs Center Fiberite Corp
Computer Usage Co Neville Chem Co
Keystone Computer Assoc Inc Holston Defense Corp
California Computer Products H Kohnstamm & Co Inc

Notes: The table reports employers with the highest share of scientists specializ-
ing in either tangible or intangible fields. The share is calculated as the proportion
of scientists with a tangible specialty relative to the total number of scientists. Em-
ployers are identified based on theworkplace reported by scientists when complet-
ing the NRSTP or AMS survey.
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Table A13: Top Frequent Words in the Business Names of Startups by Intangible
and Tangible Scientists

Intangible Specialties Tangible Specialties
music oil
support laboratories
data petroleum
design electric
foods gas
rentals furniture
steel temple
knolls scientific
communication estate
planning engineers
video security

Notes: This table reports themost frequent words appearing in the business names
of firms founded by intangible and tangible scientists, respectively. All company
names are converted to lowercase, and common terms such as company, limited,
etc., are excluded.
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Table A14: Robustness Check: Effect of VC on Scientists’ Entry with Logit and Probit
Models

Dependent Variable: 100 · 1 [StartBusinesst | NoBusinesst−1]
Model: Logit Probit

(1) (2) (3) (4)
Post1979 × Intangible 0.1375∗∗∗ 0.1443∗∗ 0.0507∗∗∗ 0.0727∗∗∗

(0.0488) (0.0562) (0.0150) (0.0274)
Intangible 0.2456∗∗∗ 0.0737∗∗∗

(0.0475) (0.0143)
Post1979 0.8153∗∗∗ 0.2508∗∗∗

(0.0342) (0.0104)
Constant -6.889∗∗∗ -3.085∗∗∗

(0.0329) (0.0098)

Control Yes Yes
Year FE Yes Yes
Individual FE Yes Yes
Observations 4,206,548 94,333 4,206,548 94,333
Squared Correlation 0.00042 0.08233 0.00042 0.07760
Pseudo R2 0.01464 0.09803 0.01464 0.09759

Notes: This table reports the difference-in-differences estimates of the ERISA effect on
business formation by scientists from 1970 to 1986. The dependent variable is a bi-
nary indicator of whether a scientist started a business in a given year. Intangible is a
binary variable indicating whether the scientist’s work specialty is classified as intan-
gible based on the LLM classification. Post1979 equals one for years after 1978. All
specifications include individual fixed effects and year fixed effects. Standard errors
are clustered at the individual level. * p < .10, ** p < .05, *** p < .01.
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Table A15: Robustness Check: Effect of VC on Scientists’ Entry with Other Controls

Dependent Variable: 100 · 1 [StartBusinesst | NoBusinesst−1]
(1) (2) (3) (4)

Post1979 × Intangible 0.0292∗∗∗ 0.0383∗∗∗ 0.0292∗∗∗ 0.0195∗∗
(0.0074) (0.0074) (0.0074) (0.0079)

VC Deals 0.0025∗∗∗ 0.0037∗∗∗ 0.0018∗∗∗
(0.0005) (0.0005) (0.0005)

Bank Branches 0.0091∗∗∗ 0.0059∗∗∗
(0.0003) (0.0003)

Population 0.9939∗∗∗ 0.6061∗∗∗
(0.0386) (0.0323)

Year FE Yes Yes Yes
Individual FE Yes Yes Yes Yes
County-Year FE Yes
Observations 4,232,643 4,237,703 4,220,249 4,250,561
R2 0.15547 0.15464 0.15564 0.15988

Notes: This table reports the difference-in-differences estimates of the ERISA effect on
business formation by scientists from 1970 to 1986. The dependent variable is a binary
indicator of whether a scientist started a business in a given year. VCDeals refers to the
number of VC deals in the county-year. Bank Branches refers to the number of active
bank branches in the county-year, based on FDIC data. Population is the total popu-
lation in millions of the county-year. Standard errors are clustered at the individual
level. * p < .10, ** p < .05, *** p < .01.
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Table A16: Robustness Check: Counties and VC Presence

Dependent Variable: 100 · 1 [StartBusinesst | NoBusinesst−1]

Panel A: VC Counties
(1) (2) (3) (4)

Constant 0.0840∗∗∗ 0.0840∗∗∗
(0.0030) (0.0030)

Post1979 0.0786∗∗∗ 0.0786∗∗∗
(0.0053) (0.0053)

Intangible 0.0168∗∗∗ 0.0168∗∗∗ 0.0168∗∗∗
(0.0046) (0.0046) (0.0046)

Post1979 × Intangible 0.0343∗∗∗ 0.0343∗∗∗ 0.0343∗∗∗ 0.0687∗∗∗
(0.0083) (0.0083) (0.0083) (0.0091)

Control Yes Yes Yes
Year FE Yes Yes
Individual FE Yes
Observations 183,092 183,092 183,092 183,092
R2 0.00145 0.00146 0.00175 0.14056

Panel B: Non VC Counties
(5) (6) (7) (8)

Constant 0.0426∗∗∗ 0.0426∗∗∗
(0.0039) (0.0039)

Post1979 -0.0004 -0.0004
(0.0056) (0.0056)

Intangible 0.0012 0.0012 0.0012
(0.0062) (0.0062) (0.0062)

Post1979 × Intangible 0.0073 0.0073 0.0073 0.0114
(0.0092) (0.0092) (0.0092) (0.0092)

Control Yes Yes Yes
Year FE Yes Yes
Individual FE Yes
Observations 1,379,975 1,379,975 1,379,975 1,379,975
R2 0.00013 0.00015 0.00019 0.15466

Notes: This table reports the difference-in-differences estimates of the ERISA effect on
business formation by private-sector scientists from 1970 to 1986. The dependent vari-
able is a binary indicator of whether a scientist started a business in a given year. In-
tangible is a binary variable indicating whether the scientist’s work specialty is classi-
fied as intangible based on the LLM classification. Post1979 equals one for years after
1978. Panel A includes scientists living in counties with a VC presence, and Panel B
includes scientists living in counties without a VC presence. VC presence is calculated
as whether the county had any early-stage VC deals during the sample period. All
specifications include individual fixed effects and year fixed effects. Standard errors
are clustered at the individual level. * p < .10, ** p < .05, *** p < .01.
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Table A17: Robustness Check: Continuous Intangibility Scores

Dependent Variable: 100 · 1 [StartBusinesst | NoBusinesst−1]
(1) (2) (3) (4)

Post1979 × IntangibleScore 0.3903∗∗∗ 0.2955∗∗∗ 0.2950∗∗∗ 0.6010∗∗∗
(0.0689) (0.0689) (0.0689) (0.0742)

Post1979 × TangibleScore -0.0595 0.0009 0.0012 -0.0371
(0.0536) (0.0536) (0.0536) (0.0582)

IntangibleScore 0.1476∗∗∗ 0.1363∗∗∗ 0.1363∗∗∗
(0.0383) (0.0383) (0.0384)

TangibleScore -0.0244 -0.0167 -0.0167
(0.0300) (0.0299) (0.0300)

Post1979 -0.1845∗∗∗ -0.1832∗∗∗
(0.0558) (0.0558)

Constant -0.0136 -0.0138
(0.0313) (0.0313)

Control Yes Yes Yes
Year FE Yes Yes
Individual FE Yes
Observations 7,688,461 7,688,461 7,688,461 7,688,461
R2 0.00014 0.00041 0.00043 0.15309

Notes: This table reports the difference-in-differences estimates of the ERISA effect on
business formation by scientists from 1970 to 1986. The dependent variable is a bi-
nary indicator of whether a scientist started a business in a given year. TangibleScore
is a continuous variable indicating the cosine similarity between the work specialty of
the scientist and the tangible specialty dictionary based on SciBERT embedding. In-
tangibleScore is a continuous variable indicating the cosine similarity between the work
specialty of the scientist and the intangible specialty dictionary based on SciBERT em-
bedding. Post1979 equals one for years after 1978. All specifications include individual
fixed effects and year fixed effects. Standard errors are clustered at the individual level.
* p < .10, ** p < .05, *** p < .01.
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Table A18: Robustness Check: Removing Information Technology Related Scientists

Dependent Variable: 100 · 1 [StartBusinesst | NoBusinesst−1]
(1) (2) (3) (4)

Constant 0.0744∗∗∗ 0.0720∗∗∗
(0.0025) (0.0025)

Post1979 0.0602∗∗∗ 0.0396∗∗∗
(0.0043) (0.0042)

Intangible 0.0109∗∗∗ 0.0099∗∗ 0.0099∗∗
(0.0039) (0.0039) (0.0039)

Post1979 × Intangible 0.0218∗∗∗ 0.0138∗∗ 0.0137∗ 0.0350∗∗∗
(0.0070) (0.0070) (0.0070) (0.0076)

Control Yes Yes Yes
Year FE Yes Yes
Individual FE Yes
Observations 4,001,066 4,001,066 4,001,066 4,001,066
R2 0.00012 0.00038 0.00040 0.15486

Notes: This table reports the difference-in-differences estimates of the ERISA effect on
business formation by scientists from 1970 to 1986 by excluding the scientists working
for Silicon Valley-related specialties (i.e., computer science, theory and practice of com-
putation, computer non-numerical processing, and computer hardware design). The
dependent variable is a binary indicator of whether a scientist started a business in a
given year. Intangible is a binary variable indicating whether the scientist’s work spe-
cialty is classified as intangible based on the LLM classification. Post1979 equals one
for years after 1978. All specifications include individual fixed effects and year fixed
effects. Standard errors are clustered at the individual level. * p < .10, ** p < .05, *** p
< .01.
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Table A19: Robustness Check: Comparing California and Non-California Scientists

Dependent Variable: 100 · 1 [StartBusinesst | NoBusinesst−1]

Panel A: California Scientists
(1) (2) (3) (4)

Constant 0.2441∗∗∗ 0.2456∗∗∗
(0.0218) (0.0218)

Post1979 0.3297∗∗∗ 0.3449∗∗∗
(0.0420) (0.0436)

Intangible 0.0175 0.0181 0.0186
(0.0320) (0.0320) (0.0320)

Post1979 × Intangible 0.3055∗∗∗ 0.3110∗∗∗ 0.3154∗∗∗ 0.4255∗∗∗
(0.0672) (0.0678) (0.0679) (0.0775)

Control Yes Yes Yes
Year FE Yes Yes
Individual FE Yes
Observations 183,092 183,092 183,092 183,092
R2 0.00145 0.00146 0.00175 0.14056

Panel B: Non-California Scientists
(5) (6) (7) (8)

Constant 0.0582∗∗∗ 0.0575∗∗∗
(0.0033) (0.0033)

Post1979 0.0406∗∗∗ 0.0352∗∗∗
(0.0056) (0.0055)

Intangible 0.0356∗∗∗ 0.0348∗∗∗ 0.0349∗∗∗
(0.0078) (0.0078) (0.0078)

Post1979 × Intangible 0.0331∗∗ 0.0276∗∗ 0.0279∗∗ 0.0804∗∗∗
(0.0135) (0.0135) (0.0135) (0.0142)

Control Yes Yes Yes
Year FE Yes Yes
Individual FE Yes
Observations 1,379,975 1,379,975 1,379,975 1,379,975
R2 0.00013 0.00015 0.00019 0.15466

Notes: This table reports the difference-in-differences estimates of the ERISA effect on
business formation by private-sector scientists from 1970 to 1986. The dependent vari-
able is a binary indicator of whether a scientist started a business in a given year. Intan-
gible is a binary variable indicating whether the scientist’s work specialty is classified
as intangible based on the LLM classification. Post1979 equals one for years after 1978.
Panel A includes scientists living in California, and Panel B includes scientists living
outside of California. All specifications include individual fixed effects and year fixed
effects. Standard errors are clustered at the individual level. * p < .10, ** p < .05, *** p
< .01.
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Table A20: Robustness Check: Removing Delaware from the Sample

Dependent Variable: 100 · 1 [StartBusinesst | NoBusinesst−1]
(1) (2) (3) (4)

Constant 0.1033∗∗∗ -0.0403∗∗∗
(0.0034) (0.0052)

Post1979 0.1298∗∗∗ 0.1260∗∗∗
(0.0058) (0.0058)

Intangible 0.0270∗∗∗ -0.0110∗ -0.0109∗
(0.0056) (0.0057) (0.0057)

Post1979 × Intangible 0.0772∗∗∗ 0.0734∗∗∗ 0.0734∗∗∗ 0.0460∗∗∗
(0.0101) (0.0101) (0.0101) (0.0099)

Control Yes Yes Yes
Year FE Yes Yes
Individual FE Yes
Observations 4,154,409 4,125,331 4,125,331 4,125,331
R2 0.00042 0.00382 0.00388 0.13253

Notes: This table reports the difference-in-differences estimates of the ERISA effect on
business formation by scientists from 1970 to 1986 by excluding the scientists residing
in Delaware. The dependent variable is a binary indicator of whether a scientist started
a business in a given year. Intangible is a binary variable indicating whether the scien-
tist’s work specialty is classified as intangible based on the LLM classification. Post1979
equals one for years after 1978. All specifications include individual fixed effects and
year fixed effects. Standard errors are clustered at the individual level. * p < .10, ** p <
.05, *** p < .01.
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Table A21: Equality of Coefficients: Effect of Patent and Publication Activity on Business Formation

Dependent Variable: 100 · 1 [StartBusinesst | NoBusinesst−1]
Model: (1) (2)

Private Industry University
Post1979 × Intangible 0.1929∗∗∗ 0.0088

(0.0172) (0.0132)
Post1979 × InventPre1979 0.0588∗∗∗ 0.2421∗∗∗

(0.0170) (0.0817)
Post1979 × PubPre1979 0.1213∗ 0.0395

(0.0673) (0.0278)
Post1979 × Intangible3 × InventPre1979 0.5974∗∗∗ 0.8929∗∗∗

(0.1147) (0.2262)
Post1979 × Intangible × PubPre1979 0.2046 0.0021

(0.1477) (0.0353)

Individual FE Yes Yes
Year FE Yes Yes
Observations 1,563,067 1,262,682
R2 0.14862 0.15070

Notes: This table reports the OLS estimates of the effect of publication and patent activity on business formation. Intan-
gible is a binary variable indicating whether the scientist’s work specialty is classified as intangible based on the LLM
classification. InventPre1979 equals one if the scientist is an inventor in a granted patent that was applied for before 1979.
PubPre1979 equals one if the scientist published a journal article before 1979. Post1979 equals one for years after 1978.
Standard errors are clustered at the individual level. * p < .10, ** p < .05, *** p < .01.
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Table A22: Effect of VC on the Industry Growth Rate

Panel A: Employment

Dependent Variable: log(Employeet+1/Employeet)
(1) (2) (3) (4)

Full Sample VC County Non VC
County

Post1979 × Intangible 0.0158∗∗∗ 0.0172∗∗∗ 0.0140∗∗∗ 0.0183∗∗∗
(0.0017) (0.0017) (0.0030) (0.0021)

Industry FE Yes Yes Yes Yes
Year FE Yes
County FE Yes
Year-County FE Yes Yes Yes
Observations 376,524 376,524 83,873 292,651
R2 0.02893 0.12503 0.06549 0.14817

Panel B: Establishments

Dependent Variable: log(EstablishmentCountt+1/EstablishmentCountt)
(5) (6) (7) (8)

Full Sample VC County Non VC
County

Post1979 × Intangible 0.0090∗∗∗ 0.0095∗∗∗ 0.0101∗∗∗ 0.0094∗∗∗
(0.0009) (0.0009) (0.0017) (0.0010)

Industry FE Yes Yes Yes Yes
Year FE Yes
County FE Yes
Year-County FE Yes Yes Yes
Observations 840,011 840,011 123,347 716,664
R2 0.02065 0.05581 0.03964 0.06056

Notes: This table reports the difference-in-differences estimates of the ERISA effect on
the industry growth rate from 1974 to 1986. VC County represents a subsample with
counties that had at least one VC investment during 1979-1986. Non VC County is the
opposite. Number of Employees is the number of paid employees during the payroll
period. Establishments is the number of establishments with paid employees. Intangible
is a binary variable indicating whether the industry is classified as intangible. Post1979
equals one for years after 1978. Standard errors are clustered at the county level. * p <
.10, ** p < .05, *** p < .01.
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Table A23: Robustness Check: Intangible Capital and Fixed Asset Specificity

Panel A: Employment

Dependent Variable: Number of Employees
(1) (2) (3) (4)

Full Sample VC County Non VC
County

Post1979 × RecoveryPPE -2.074∗∗∗ -2.659∗∗∗ -17.47∗∗∗ -0.7790∗∗∗
(0.2177) (0.2634) (2.019) (0.0541)

Industry FE Yes Yes Yes Yes
Year FE Yes
County FE Yes
Year-County FE Yes Yes Yes
Observations 1,377,151 1,377,151 179,205 1,197,946
R2 0.38359 0.38797 0.42818 0.28559

Panel B: Establishments

Dependent Variable: All Sizes 1-4 Employees
(5) (6) (7) (8)

VC County Non VC
County

VC County Non VC
County

Post1979 × Intangible -0.5672∗∗∗ -0.0243∗∗∗ -0.0231 0.0132∗∗∗
(0.0621) (0.0027) (0.0251) (0.0014)

Industry FE Yes Yes Yes Yes
Year-County FE Yes Yes Yes Yes
Observations 179,205 1,377,151 179,205 1,197,946
R2 0.41794 0.41983 0.37614 0.39069

Notes: This table reports the difference-in-differences estimates of the ERISA effect on
industry size from 1974 to 1986. VC County represents a subsample with counties that
had at least oneVC investment during 1979-1986. NoVCCounty is the opposite. Number
of Employees is the number of paid employees during the payroll period. Establishments
is the number of establishments with paid employees, categorized by employment-size
class (e.g., 1–4 employees). RecoveryPPE is a continuous variable indicating the PPE
liquidation recovery rate at the SIC two-digit level (Kermani and Ma, 2023). Post1979
equals one for years after 1978. Standard errors are clustered at the county level. * p <
.10, ** p < .05, *** p < .01.
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