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Abstract

This paper examines the causal effect of venture capital (VC) on scientists’ se-
lection into entrepreneurship. I collect a novel historical dataset of U.S. scientists
in the 1960s and track their business formation activities. I leverage the reform
of the "prudent man" rule under the Employee Retirement Income Security Act
(ERISA) as a natural experiment that positively shocks the supply of VC. I use large
language models to further exploit the cross-sectional variation in how scientists’
work specialties rely on tangible versus intangible capital. I show that scientists’
business formation increased by 91% post ERISA. Effects are stronger for those
with intangible specialties and those working in the private sector. These scientists
were not marginal entrants but had higher wages and were named inventors on
patents. I rationalize the results and quantify the effect of VC on alleviating financial
constraints through an occupational choice model. I show that the individual-level
effects ultimately facilitate the growth of intangible industries at the county level.
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1 Introduction

Technology entrepreneurship is widely recognized as a critical source for economic

growth. By fostering innovation, creating employment opportunities, and fueling

competitiveness, technology entrepreneurship stimulates broader market development

and improves productivity (Aghion and Howitt, 1992; Schumpeter, 1983).

Venture capital (VC) has long been recognized as a driver of technology en-

trepreneurship (Nanda and Rhodes-Kropf, 2017; Howell, 2017). Macro-level evidence

suggests that regions receiving greater VC inflows exhibit stronger economic growth

and innovation (Chen and Ewens, 2025; Fehder, Hausman, and Hochberg, 2025;

Kortum and Lerner, 2000; Samila and Sorenson, 2011). Skilled labor forming startups is

especially important in the context of technology entrepreneurship (Acemoglu, Akcigit,

Alp, Bloom, and Kerr, 2018; Akcigit and Kerr, 2018; Christensen, 2011).

Despite the recognized importance of VC in financing innovation, we have limited

causal evidence of the impact of VC on the entrepreneurial entry decisions of skilled

labor at the individual level. In other words, do promising projects by skilled labor go

unfunded without VC? If so, what type of projects are left unfunded?

Answering these questions is empirically challenging for three main reasons. First,

the definition of skilled labor is ambiguous, so the data sample of skilled labor can

vary across contexts. Second, entrepreneurial entry decisions at the individual level

remain largely unexamined due to a lack of systematic data. Typically, only those who

start businesses are observed in archival databases, while constructing a comprehensive

dataset on would-be entrepreneurs is empirically demanding. Third, there are few

historical instances of exogenous shocks to the supply of VC. VC endogenously flows to

places where there are opportunities and local entrepreneurial ecosystems, and such

places are likely to take off even in the absence of VC funding.

To overcome these challenges, I construct a novel panel of U.S. scientists who were

active in the 1960s as a representative sample of skilled labor.1 I compile a cross-sectional
1Scientists in this paper are defined as scientific and technical personnel engaged in research and

development.
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snapshot of their educational backgrounds and work experiences, and then expand it

into panel data by linking the scientists to business registration data to observe their

selection into entrepreneurship. I choose this time period because the data I use is

anonymized after 1972, and only the earlier data contains both names and residence

locations, which allows me to match scientists to business registration data.

I leverage the 1979 reform of the "prudent man" rule under the Employee Retirement

Income Security Act (ERISA) in the U.S. as an exogenous shock to the supply of VC.

This ERISA reform implemented by the Department of Labor relaxed pension fund

allocation restrictions and substantially increased the pool of capital available to VC

firms (Kortum and Lerner, 2000; Gompers, 1994). Prior to this reform, VC firms had

difficulty raising funds because the “prudent man” rule, as one of the fiduciary rules

of ERISA, restricted pension fund investments in higher-risk assets such as small firm

equity. Existing research leverages this policy change to examine the effect of VC in

international settings and at the country level (Gornall and Strebulaev, 2021), while

this paper focuses on how financial constraints affect individual decisions regarding

entrepreneurial entry across tangible and intangible work specialties.

I exploit the cross-sectional variation in scientists’ work specialties by classifying

the specialties according to their reliance on tangible assets. VC seeks scalability and

outsized returns, which are usually more common in businesses that rely more on

intangible capital.2 Moreover, as a specialized financial intermediary, VC shares risks

while closely monitoring entrepreneurs to mitigate moral hazard problems associated

with intangible investments (Beck, Döttling, Lambert, and van Dijk, 2023). Therefore,

scientists with intangible work specialties are more likely to be affected by the expansion

of VC. Importantly, these scientists did not select their specialties in anticipation of

future VC inflows, as the U.S. VC market was negligible in the 1960s3.

The main finding contains four sets of results. First, following the ERISA reform,
2There are several measures of intangibles at the firm level, using R&D expenses and selling, general,

and administrative (SG&A) expenses (Crouzet and Eberly, 2021; Eisfeldt and Papanikolaou, 2013, 2014;
Peters and Taylor, 2017). In this study, instead of at firm level, I measure the reliance of intangible capital
at the scientific specialty level.

3Fewer than one hundred early-stage investment deals per year, according to Venture Economics.
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scientists became more likely to start businesses. Business formation rate rose from

0.78% in the seven years before the reform to 1.49% in the seven years after, representing

a 91% increase. Moreover, the result remains robust when (i) relying on continuous

measures of tangibility, (ii) excluding computer science–related scientists to isolate

the effect from the concurrent rise of personal computing and associated intangible

business opportunities, and (iii) dropping Delaware to account for the legal structure

of business registration.

Second, although all scientists responded to the ERISA reform, those with intangible

specialties had a business formation rate that was relatively 0.05 percentage points

higher than that of scientists with tangible specialties. Given the pre-ERISA business

formation rate of 0.78%, this effect represents a 6.41% increase relative to the baseline.

Third, the effects are primarily driven by scientists working in the private sector.

Private scientists with intangible specialties had a business formation rate that was

relatively 0.18 percentage points higher than that of private scientists with tangible

specialties. Given the pre-ERISA business formation rate of 1.22% by private scientists,

this effect represents a 14.8% increase relative to the baseline. By contrast, university

scientists hardly responded to the shock. This is consistent with an entrepreneurial

spawning mechanism.4 The evidence underscores the role of VC in incentivizing

inventors to commercialize innovations outside of corporate boundaries.

Fourth, the effects are concentrated among private scientists with higher wages and

prior patenting activity. Responsiveness to VC supply increases with wage quartiles: the

higher the wage group, the stronger the response. Among private scientists with at least

one patent before ERISA, those with intangible specialties had a business formation

rate that was 0.74 percentage points higher than scientists with tangible specialties.

This indicates a 25.5% relative effect of starting a business with a baseline rate of 2.90%

before ERISA for the private scientists who filed at least one patent. By contrast, the

difference is only 0.17% among scientists without prior patents. This result suggests

that VC disproportionately encourages high-quality technology entrepreneurship.
4Entrepreneurial spawning process is that individuals leave large bureaucratic companies and become

entrepreneurs (Gompers, Lerner, and Scharfstein, 2005).
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To rationalize the empirical findings, I extend the occupation choicemodel developed

by Evans and Jovanovic (1989) to capture the financial constraints and entrepreneurial

entry decisions. Scientists choose between wage employment and entrepreneurship.

Entrepreneurial production requires investment in physical and intangible capital.

Scientists finance businesses through funds raised against wealth and by pledging

physical capital. Since only physical capital is pledgeable, financial constraints bindmore

tightly for scientists with intangible specialties. Venture capital relaxes these constraints

by increasing the share of funds that can be raised against wealth, thereby making

intangible scientists more likely to enter entrepreneurship. The model shows that

scientists with higher productivity are more likely to be financially constrained, which

is consistent with the empirical results that productive scientists are more responsive

to the VC shock. Moreover, the model quantifies the role of VC in relaxing financial

constraints. Using the data from my analysis and the literature, this framework shows

that VC relaxes financial constraints by 69.2%.

At the county-industry level, I document that VC facilitates the expansion of in-

tangible industries. Employment and establishment exhibited substantial growth in

intangible industries after the ERISA reform. Moreover, the effect is more salient in

counties with ex post VC presence. These aggregate trends are consistent with the

individual-level evidence on scientists.

Overall, these findings demonstrate that VC significantly enhances the rate of busi-

ness formation among scientists, particularly those with intangible work specialties. Far

from being marginal entrants, these scientists often held patents and were recognized

as productive inventors. Moreover, VC contributes to broader economic growth by

enabling the expansion of the intangible economy.

Related Literature. This paper contributes to several strands of literature in en-

trepreneurship and financial intermediation. First, this paper speaks to the VC and

technology entrepreneurship literature, which highlights the role of VC-backed firms in

driving IPOs (Lerner and Nanda, 2020) and underscores the importance of monitoring,

staged financing, and value-added services (Bernstein, Giroud, and Townsend, 2016;
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Gompers, 1995; Korteweg and Sensoy, 2023). Gornall and Strebulaev (2021) use G7

members as a comparison group and show that 65% of top public firms would not have

been founded in the U.S. without the ERISA reform. However, the mechanisms through

which VC incentivizes skilled labor to start a business are not yet fully understood.

This paper shows causal evidence of the effect of VC on scientists’ business formation

decisions and explores the heterogeneity within the effects. Consistent with Babina,

Bernstein, and Mezzanotti (2023), who find that the Great Depression contributed to

the decline of technological entrepreneurship and accelerated the shift of innovation

toward larger firms, I find that VC deregulation had the opposite effect, fostering

entrepreneurial spawning as employees left established firms to start businesses. The

emergence of spinouts from established technology firms further proves the role of

VC in enhancing market competitiveness, a key driver of long-term innovation and

economic growth (Cunningham, Ederer, and Ma, 2021; Ma, 2025).

Second, my results provide insight into the literature on financial intermediation and

small business financing. Financial intermediaries play a key role in enhancing liquidity

and reducing information asymmetries. Prior research highlights that banks are critical

sources of financing for small and medium-sized enterprises (SMEs), which often rely

on debt (Robb and Robinson, 2014; Kerr and Nanda, 2009; Nanda and Nicholas, 2014)

and home equity (Corradin and Popov, 2015; Kerr, Kerr, and Nanda, 2022). Most of the

research on financial intermediation centers around banks. Literature has shown that

the intangibles of large firms are primarily associated with cash flow-based lending or

unsecured debt, whereas tangibles are associated with asset-based lending or secured

debt (Benmelech, Kumar, and Rajan, 2022, 2024). Moreover, banks have difficulty in

assessing the quality of an innovation as part of the intangible capital. As a result, a

funding gap emerges—one that VC is better positioned to fill. Departing fromHellmann,

Lindsey, and Puri (2008), who study how banks use VC investments to build lending

relationships, I show that VC, as a special type of financial intermediary, is particularly

good at financing technology startups and complements banks.

Finally, the findings contribute to the broader discussion on the role of financial
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intermediaries in economic growth. The share of intangible assets in firms’ capital stock

and the aggregate economy has increased markedly in recent decades (Corrado, Hulten,

and Sichel, 2009; Crouzet and Eberly, 2021; Eisfeldt and Papanikolaou, 2014; Haskel

and Westlake, 2017). Prior research shows that bank financing can support intangible

investment when patents serve as collateral, facilitating access to debt capital (Mann,

2018; Morse, 2024). Relatedly, Hochberg, Serrano, and Ziedonis (2018) document the

use of patent-backed assets in venture lending. This paper offers a complementary

perspective: VC is particularly well suited for financing intangible assets due to their

non-rival nature and scalability (Crouzet, Eberly, Eisfeldt, and Papanikolaou, 2022).

The expansion of the VC market has played a critical role in supporting the growth of

intangible industries.

The rest of this paper is organized as follows. Section 2 provides an overview of

the historical context of VC in small business financing. Section 3 describes the data

sources and presents descriptive statistics on the scientists included in the analysis.

Section 4 examines the reduced-form relationship between the VC supply and business

formation and explores the heterogeneity. Section 5 rationalizes the empirical results

and quantifies the effect of VC in relaxing financial constraints through an occupational

choice model. Section 6 investigates the effects of VC at macro level. Section 7 concludes.

2 Historical Context

The financing landscape for technology entrepreneurship remained largely informal un-

til the advent of VC in 1959, marked by the establishment of Draper, Gaither & Anderson

(DGA), the first VC firm structured as a limited partnership. DGA’s investment strategy

laid the groundwork for private capital investment, emphasizing four key criteria: "(1)

companies offering unique products or services, (2) substantially developed offerings

with predictable commercialization timelines and costs, (3) a clearly identifiable market,

and (4) the presence of or access to qualified management." Similarly, Greylock’s 1965

offering memorandum underscored a preference for speculative startups characterized

6



by innovative products, processes, or technologies (Nicholas, 2019).

However, raising capital for new ventures posed significant challenges because

of the limited investment avenues available for entrepreneurs. Traditional sources of

funding, such as Small Business Investment Companies (SBICs)5, were off-limits to

those unwilling to accept government loans. Additionally, institutional investors, such

as pension funds, were constrained by regulatory frameworks like the "prudent man"

rule, which prohibited investments in higher-risk assets, including VC (Zock, 1980).

This left individual investors as a potential source of funding, but this route presented

its own challenges. The volatility of personal wealth, stemming from events such as

divorce or death, created issues regarding the valuation of invested capital and could

result in protracted disputes over the worth of early-stage ventures. Consequently, the

difficulty of securing funding in this era was compounded by a complex interplay of

regulatory constraints and the inherent risks of dealing with individual investors. By

the mid-1970s, there were no more than about 30 fairly substantial VC firms nationwide.

Even the more established VCs, such as Greylock and Venrock, managed relatively

small investment pools by modern standards (Nicholas, 2019).

The absence of institutional investors as limited partners and regulatory constraints

on pension fund investments further restricted the growth of the VC industry, leaving

early-stage startups with limited funding opportunities. Before the ERISA reform in

1979, the "prudent man" rule deterred many pension managers from allocating capital

into VC funds, as investing in small business securities can be seen as imprudent. ERISA

set the fiduciary requirement imposed on private pension funds, according to which a

manager must discharge their duty "with the care, skill, prudence, and diligence under

the circumstances then prevailing that a prudent man acting in a like capacity and

familiar with such matters would use in the conduct of an enterprise of a like character

and with like aims." A fiduciary must protect investors by continually monitoring. The

fiduciary requirements imply that investing in small business securities can be of high
5SBICs are private funds licensed by the U.S. Small Business Administration (SBA) that invest in small

firms using their own capital and SBA-guaranteed debt, which allows them to borrow at favorable terms
and expand financing capacity.
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risk. Moreover, ERISA was overseen by both the Treasury and the Department of Labor

at that time, which imposed unnecessarily complex administrative requirements.

In August 1978, President Jimmy Carter proposed the ERISA reorganization plan

to Congress, and it was approved in October. 6 The Treasury was to have statutory

authority for the minimum standards, while the Department of Labor (DOL) was to

have statutory authority for the fiduciary obligations.

In June 1979, the DOL explicitly clarified the fiduciary requirement in a federal

register (Figure A1), allowing fund managers to invest capital in venture funds as part

of their total portfolio. This reform significantly increased the supply of capital to VC

funds, as shown in FigureA2. The fundraising patternsweremirrored in the investments

by VC into small firms (Kortum and Lerner, 2000). In a similar spirit, the staggered

adoption of “prudent man” rules, prompted by the 1994 Uniform Prudent Investor Act,

also increases capital commitments to the local VC industry (González-Uribe, 2020).

The composition of limited partners in VC funds changed significantly due to the

ERISA reform. Prior to the ERISA reform, the limited partners of VC funds were

evenly distributed among industrial corporations, insurance companies, foundations,

and individuals. But by 1984, pension funds had become the single most important

source of VC funds (Florida and Kenney, 1988). It is important to note that ERISA

regulations do not apply to state pension funds, as these funds are governed by state

laws rather than federal regulations. State pension funds typically adhere to more

conservative investment strategies, prioritizing fixed income and public equities.7 While

ERISA exclusively affects private pension funds, these funds generally exhibit greater

allocations to VC compared to state pension funds.
6Message to Congress Transmitting Reorganization Plan No. 4 of 1978.
7However, some of the largest state pension funds (e.g., CalPERS, CalSTRS, NYSCRF, Texas TRS)

were pioneers in investing in alternative assets since the 1980s.
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3 Historical Data

3.1 Scientists and Engineers

At the heart of this paper is the comprehensive database of historical scientific and

technical personnel of the U.S. that I assembled. To comprehensively understand the

state of U.S. scientific and technical personnel in the 1960s, I collected individual-level

data from two sources: the National Register of Scientific and Technical Personnel

(NRSTP) from the National Archives and the American Men of Science (AMS). I then

tracked their business formation activities from 1970 onward.

There are two main reasons for collecting data on scientists in the 1960s instead of

earlier or later years. First, the ERISA shock was unanticipated during this period, as the

U.S. VC market was still in its early stages. Therefore, scientists did not select their work

specialties based on future financing opportunities. Even if they had such intentions,

they would have likely chosen tangible specialties that were more easily financed by

banks. Second, the NRSTP data ends in 1972; subsequent versions are anonymized,

preventing the linkage between scientists and business registrations.

3.1.1 National Register of Scientific and Technical Personnel

I retrieved the NRSTP dataset from the National Archives Access to Archival Databases.

The NRSTP was initially created by the National Science Foundation (NSF) to identify

specialized professionals for national emergencies, but once the data’s utility for sta-

tistical analysis was recognized, its primary function shifted toward providing a key

source of statistical information on scientific and engineering personnel.8 It provided

critical data for developing science policy and supplied information to Congress and

government agencies.

The NRSTP records professionals in various scientific and technical fields, including

biology, chemistry, economics, geology, mathematics, psychology, meteorology, physics,

anthropology, political science, and sociology. The register was created in collaboration
8https://aad.archives.gov/aad/series-description.jsp?s=3550. Last retrieved on September 23, 2025.
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with several professional organizations, including the American Institute of Biological

Sciences, the American Chemical Society, the American Mathematical Society, and the

American Psychological Association.

This dataset contains surveys distributed over eight years through various academic

societies to respondents whowere predominantly academic and research professionals.9

The content of each record varies slightly by year, but typical entries include details

such as name, institution, sex, age, educational background, employment specialty,

job function, self-reported income, language ability, citizenship, and memberships in

professional organizations. Additional information, such as place of birth (after 1966)

and government sponsorship (after 1962), is included in later years. This dataset thus

serves as a comprehensive source for understanding the workforce during these periods.

The survey response rate was approximately 60% but varied across academic societies.

For instance, in 1968, the response rate among biologists was 54%,10 while around

70% of the eligible individuals in the Register of the American Meteorological Society

responded.11 Additionally, the NSF reported that over 90% of U.S. science doctorates

were captured in the 1964 wave of the survey.

This paper uses the 1962–1968 NRSTP data because these four waves include in-

formation on the scientists’ city of residence. The data was processed by extracting

information from the digitized codes, as shown in Figure 1. Subsequently, the codes for

each variable are matched with their meaning, which is documented in the photocopies

of the codebook films. The raw digitized format consists of thousands of entries, with

each line representing an individual record. The values in different positions in each

line correspond to different variables (i.e., survey questions). To analyze the data, I first

separate these values into their respective variables. Subsequently, I match the numbers

with their descriptions based on the codebooks, which are scanned documents without

optical character recognition (OCR). I manually clean the codebooks to ensure accurate
91954, 1958, 1960, 1962, 1964, 1966, 1968, and 1970. The Survey of Doctorate Recipients continues

the NRSTP survey after 1970. However, it uses anonymized census data, making it impossible to link
scientists to business registration records.

10American Institute of Biological Sciences Annual Report 1969.
11Bulletin of the American Meteorological Society, Vol. 47, No. 8, August 1966.
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mapping between numerical values and descriptions. Where the original scan is faint,

certain words are best guesses by ChatGPT-4o based on common nomenclature. Chat-

GPT excels at this task, as the transformer models are trained to reconstruct incomplete

sentences and words.

3.1.2 American Men of Science

I digitized the eleventh edition of AMS which was compiled from 1960 to 1965. First

published in 1906 by James McKeen Cattell, the AMS directory is an exceptionally

comprehensive source of biographical information for male and female scientists across

the United States and Canada. Scholars have used AMS data to investigate how children

change the academic productivity of women in science under the setting of baby boom

(1946–1964) (Kim and Moser, 2025). I digitized different editions and focused more

on the Silent Generation. In addition, some studies have used theMinerva Jahrbuch der

Gelehrten Welt for academics’ information (Iaria, Schwarz, and Waldinger, 2024), it is

more of a worldwide directory of academics, yet does not necessarily have the most

comprehensive coverage for North America.

The AMS was created through questionnaires with the assistance of various scien-

tific societies, universities, research labs, and an Advisory Committee appointed by

the National Academy of Sciences, the National Research Council, and the American

Association for the Advancement of Science. As per the Preface to this edition, the

criteria for inclusion are:

1. Achievement, through experience and training, of stature in scientific work equiv-

alent to that associated with a doctoral degree, coupled with continued activity in

such work.

2. Research activity of high quality in science, evidenced by publication in reputable

scientific journals, or, for thosewhosework cannot be published due to governmen-

tal, commercial, or industrial security, by the judgment of peers among immediate

co-workers.

11



3. Attainment of a position of substantial responsibility requiring scientific training

and experience equivalent to that described in (1) and (2).

The directory is divided into two sections: Physical and Biological Sciences, and Social

and Behavioral Sciences. Only the first section was digitized, because the primary

focus of this research is the scientific and technical personnel. This section contains six

volumes, and there are around 25,000 entries per volume.

Each entry in the AMS directory provides detailed biographical information about

individual scientists, including their education, career history, and areas of research

(see the example in Figure 1), providing a comprehensive view of their scientific contri-

butions and professional backgrounds. The records also contain socioeconomic infor-

mation, which comprises personal data such as the scientist’s date of birth, marriage

year, number of children, and contact address.

59% of the addresses in the AMS dataset include the zip code, while many addresses

only have street names and the city or state. I utilize cloud-based services to enhance the

dataset. Specifically, I employ the OpenStreetMap API, which enables the retrieval of

the zip code based on the provided addresses. The API helps to increase the proportion

of addresses with zip codes from 59% to 64%. This approach not only improves the

geographic analysis of scientists, but is also critical for linking scientists across databases

(e.g., based on names and zip codes).

3.1.3 Concatenating the Two Data Sources

My NRSTP sample records include 447,317 scientists who responded to the survey

between 1962 and 1968. The AMS sample add 59,877 more scientists to the total data

sample. 31,468 scientists appear in both datasets based on name and county location.

For the overlapping entries, I retain the records in the NRSTP because the variables

recorded there are more comprehensive than in AMS. 56% of the AMS scientists appear

in the NRSTP records, indicating that the NRSTP has a good record of senior scientists.

Thus, AMS serves as a complementary dataset to the NRSTP records on the senior
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scientists. This results in 475,726 scientists.12 Because my further analysis requires

tangibility of specialty, I drop 17,023 scientists whose work specialties are missing or

not correctly recorded. The final dataset contains information on 458,703 scientists.

3.2 Matching Scientists’ Data with Other Databases

3.2.1 Matching Scientists and Engineers with Business Registrations

Business registrations in the U.S. are stored by each state’s Secretary of State. Open-

Corporates gathers this data and distributes it as a single download package.13 This

paper uses data from all jurisdictions (i.e., states) within the U.S. It should be noted

that bankruptcies or any other type of litigation against a company are not listed in the

records of the Secretary of State. Instead, this type of information would have to be

discovered through a litigation search.14

The business registry data from OpenCorporates covers 76 million businesses across

all U.S. states. The data includes incorporation dates and dissolution dates, as well as

the state and registration address for the business. Businesses can be registered in more

than one state. For example, a Texas business that also does business in Florida may be

registered as a domestic company in Texas and as a foreign company in Florida (Griffin,

Kruger, and Mahajan, 2023). In addition, many firms are registered in the state they

operate in as well as in Delaware. OpenCorporates covers both and often connects the

two registrations through the branch and foreign company variables. The vast majority

of businesses formed by the scientists in my sample are domestic firms only.

Although census data, such as the Longitudinal Business Database (LBD), contains

business registration information, it only begins in 1976, which is too short a period

before the ERISA reform in 1979 to conduct a parallel trend test. OpenCorporates
12Scientists whose county location is missing are dropped, because the later matching process relies on

both name and location. Zip codes are mapped to counties because people are likely to move or start
businesses within a county but not necessarily within the same zip code. The mapping of zip codes to
county FIPS codes comes from the U.S. Department of Housing and Urban Development’s USPS ZIP
Code Crosswalk Files.

13I obtained the data under the reference OCESD-14963, data version as of January 2025.
14https://www.jonesday.com/en/insights/2012/10/public-disclosure-requirements-for-private-

companies-us-vs-europe. Last retrieved on September 23, 2025.
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provides business registry data dating back to the 1940s or earlier, depending on the

state’s records. It also includes the names of the officers linked to the companies, which

is essential for matching with the scientists’ data. Therefore, OpenCorporates provides

the most consistent, publicly available dataset on U.S. business registrations.

The business addresses in OpenCorporates are cleaned using regularization to

extract the zip codes and I then match them to the corresponding county. During the

period I use to match the addresses with scientists (1945-1990), 57% of the 14,495,168

firms in the dataset possess registered address data. Among these firms, 84% include

the zip code. I use OpenStreetMap API to obtain the zip codes for the remaining 16% of

the non-standard addresses, thereby obtaining the zip codes for an additional 155,820

addresses and enhancing the coverage of the zip code to 93%.

I use the spaCy library (en_core_web_lg) to classify whether an officer’s name in

the OpenCorporates is likely a human name or a company name. Specifically, the

function checks whether the input text includes any entities labeled as "PERSON" by

the NLP model. This analysis reveals that 88.08% of the officer names are classified as

human names rather than company names, providing insight into the composition of

the entities recorded in the dataset.

I then map the OpenCorporates data to the AMS and NRSTP data by name and

county FIPS code. I only match scientists to businesses formed between 1945 and 1990

because the scientists in my data sample were born in the 1920s and 1930s. After 1990,

they would likely be too old to start a business, and the risk of mistakenly matching

scientists with the same name but different identities becomes more significant. In the

final data sample,15 3.16% of the scientists are found to be associated with at least one

business.

3.2.2 Matching Scientists and Engineers with Patent Data

The patent data is from the PatentCity dataset (Bergeaud and Verluise, 2024), which

provides the zip code and inventor names of U.S. patents dating back to 1836. Com-
15Only scientists with work specialty information are included in the final sample.
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pared to the USPTO dataset, which began recording inventor names only in 1976, the

PatentCity dataset provides better coverage of historical patent data. It includes records

of the “first publication of granted patents,” meaning that only the patent applications

corresponding to granted patents are included in the dataset.

I then map the patent data with the AMS and NRSTP data by name and county FIPS

code. Again, I only match scientists to patents filed between 1900 and 2000 to reduce

the risk of mistakenly matching scientists with the same name but different identities.

In the final data sample, 9% of the scientists are found to be associated with at least one

patent.

3.2.3 Matching Scientists and Engineers with Publication Data

To measure scientific productivity, I match the scientists with their publications and

citations from SciSciNet (Lin, Yin, Liu, and Wang, 2023), based on the full data from

Microsoft Academic Graph (MAG, now OpenAlex). MAG was updated weekly until

December 2021. SciSciNet covers over 134 million scientific publications and millions of

external linkages to funding and public uses.

I restrict the data to authors with at least one English-language journal publication

between 1900 and 2000. I match the scientists and engineers with the author_ids in

MAG, using first and last names, as well as the county FIPS of the author’s institutional

affiliation. Based on the birth year of the scientists and engineers, I further restrict the

matched publications to scientists with no publications after 2005. In the final data

sample, 10% of the scientists are found to be associated with at least one published

paper.

3.3 Descriptive Statistics

My final sample consists of 458,703 scientists with recorded county FIPS codes and work

specialties. This section documents the characteristics of the scientists in my sample.
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Gender The AMS dataset lacks gender information, so I supplement it with the gender

guesser library. The gender guesser tool utilizes a dataset of approximately 40,000 first

names and their associated genders, covering most first names in European countries.

For each scientist, I first check the NRSTP for gender information and used it if available.

If not, I apply the gender guesser to predict the gender based on the scientist’s first

name. The sample of scientists and engineers is dominated by males, with 417,903 male

scientists and 38,895 female scientists. This is consistent with the literature.

Cohort TheNRSTP dataset does not include the date of birth as AMSdoes, so I develop

a method to predict the scientists’ year of birth based on the Year of Highest Degree and

the Level of Highest Degree recorded in the NRSTP. I assume that scientists typically

obtain their PhD (or higher, such asMD) around the age of 30, aMaster’s degree around

the age of 25, and a Bachelor’s degree around the age of 22. Using these assumptions,

I estimate the year of birth by subtracting the predicted age at the time the highest

degree was obtained from the Year of the Highest Degree, thereby improving the overall

coverage of missing birth year information. The overall sample is dominated by the

Silent Generation (i.e., born between 1928 and 1945). They grew up during the Great

Depression and World War II, which shaped a more risk-averse and pragmatic outlook

(Figure A3). One may argue that, since the scientists were born in the 1930s–1940s, they

may have been too old when the ERISA reform occurred. However, research has shown

that the mean age at founding for the fastest-growing startups is 45 (Azoulay, Jones,

Kim, and Miranda, 2020).

Education The data sample comprises 458,703 scientists, including 160,082 PhD hold-

ers and 10,996 MD holders. The average year in which the scientists obtained their

highest degree is 1954. University names are standardized by mapping them to the

Integrated Postsecondary Education Data System using both the institution’s name

and city location. The top three alma maters among the scientists are the University of

Michigan-Ann Arbor, Columbia University, and the University of California-Berkeley,

while other elite institutions such as Harvard University and MIT are also common
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(Table A2).

Geographical Location The majority of scientists are concentrated around San Fran-

cisco, Los Angeles, and counties in New England (Figure 2). However, it is worth noting

that there are also concentrations of scientists in the central U.S.16 This concentration

suggests that the critical expertise and resources were likely pooled in specific regions,

possibly due to the specialized infrastructure or proximity to major research institutions

and contractors for government programs (such as the defense program and space

program).

Income The scientists earned more than the general population in the lower and

middle quantiles (Table A3). Income inequality within the scientific community is less

than that of the overall U.S. population. The median wage is higher than the general

population, yet the top 1% is lower. These reflect the relatively standardized wage

structures within scientific professions.

Employment Most of the scientists are employed in private industry or business, while

a significant number also work in colleges and universities (Table A4). The proportion

of scientists and engineers in private industry is comparable to that in academia. Within

the private sector, the top employers are typically in the chemical manufacturing and

petroleum-related industries, the electrical and electronics sectors, and large aerospace

and defense contractors (Table A5).

Work Specialty A major challenge was to compile the work specialties into an

individual-year panel. The NRSTP generates a sequence of identifiers for each specialty

in each wave of the survey. However, these identifiers vary across waves, and the

classification of specialties changed year by year. For instance, Probability and Statistics

was later divided into two separate specialties: Probability and Statistics. To link
16For example, during the Cold War, Natrona County (FIPS 56025) in Wyoming was involved in

uranium mining, which was crucial for nuclear weapon development. El Paso County (FIPS 08041) in
Colorado is home to the North American Aerospace Defense Command. Additionally, Pima County
(FIPS 04019) in Arizona housed a Titan II missile complex, which was operational from 1963 to 1987.
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specialties across years, I standardize names and manually merge or split the specialties

as needed. If a scientist appears in multiple waves of the NRSTP survey, I retain the

most recent first work specialty as their specialty. I also show that scientists typically do

not change the tangibility of their specialty (Table A10). The data sample reveals a

strong educational background concentration in Chemistry, the Theory and Practice of

Computation, and Physics (Table A6).

Patents and Publications The average publication rate among scientists is slightly

higher than the patent rate, which in turn exceeds the business formation rate (Table

1). Most businesses founded by scientists do not have a granted patent. On average,

each scientist publishes two papers in their lifetime, with a median citation count of

11 and a typical coauthor count of one to two. While most publications are not linked

to patents, some highly influential papers are cited by approximately 30,000 patents.

There is a weak correlation between business formation activity and both patenting

and publishing activity, indicating a limited association between these factors (Table

A7). This suggests that scientific output and intellectual property generation do not

strongly predict entrepreneurial activity among scientists. Figure A4 shows the number

of patents filed per scientist over this time. The data indicate that scientists are most

active in patenting during their 30s and 40s. Patenting activity in the sample declines

markedly after 1970, and by the time of the ERISA shock in 1979, it had nearly ceased

altogether.

4 VC on Scientists’ Entrepreneurial Entry

I use the 1979 ERISA reform as an exogenous shock that led to the large-scale emergence

of VC as a financial intermediary for two reasons. First, this reform is unique in its

significant impact on VC fundraising, as one of the few regulatory changes to have

such an effect. While the capital gains tax cut in the 1980s could also have influenced

VC investments, most VC investors post-1980 were tax-exempt institutions, such as

pension funds, endowments, and trusts, so the supply effect of this tax cut was small
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(Gompers, 1994; Gompers and Lerner, 1999). Second, the early-stage equity investment

landscape of the 1980s had not yet developed a standardized approach with similar

term sheet structures. Equity investment in small businesses was primarily provided by

individuals, with little involvement from financial intermediaries. Furthermore, angel

investment was not popularized until the 1990s. The ERISA reform played an important

role in establishing VC as a key financial intermediary in equity investment. After the

ERISA reform, both the number of deals and the total investment amount surged, as

illustrated in Figure A2.

I first show that in my data sample, business formation steadily increases over the

sample period, with no abrupt change around the 1979 ERISA reform (Figure 4, numbers

of business formed are normalized to 1978). Business formation by scientists more

than doubled following the ERISA reform, indicating its unique impact on scientists.

Notably, the total business formation rate for the scientists from 1945 to 1990 was 3.15%.

In contrast, during 1971–1978, the seven years preceding ERISA, the rate was only 0.78%.

Although the rate increased to 1.49% in the seven years following ERISA, it remained

below the 3% rate observed in the general population.17 This indicates that scientists

have a lower propensity to start businesses than the general population.

4.1 Measuring the tangibility of specialties

The 1979 ERISA reform represents a one-off exogenous shock. As the ERISA reform

did not take place until 1979, scientists could not have chosen their work specialties

based on anticipated VC funding in the 1960s. Even if their choice of work specialty

was influenced by anticipated funding opportunities, they would likely have favored

fields more suitable for bank lending. Therefore, scientists’ work specialties provide

exogenous cross-sectional variation in the exposure to the VC shock, and thus for a

Difference-in-Differences (DiD) design.

The cross-sectional variation is based on the assumption that scientists working

in fields more reliant on intangible capital likely faced greater exposure to the ERISA
17The 3% figure is taken fromWallskog (2025), which is based on census data.
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shock. This is consistent with the literature that finds that the scalability of intangibles

can enable home-run success (Haskel and Westlake, 2017). Moreover, the assumption

is grounded in the fact that banks do not lend to intangible businesses for two reasons.

First, asset-based lending depends on the liquidation value of tangible assets that can

be pledged as collateral; intangible businesses typically lack such assets. Second, cash

flow-based lending relies on stable operational cash flows, which early-stage startups

often do not have. Consequently, intangible startups are less likely to receive bank

financing.

In this context, I define tangible specialties as those associatedwith physical products

or processes (e.g., a machine or manufacturing method), whereas intangible specialties

are related to non-physical outputs, such as software and algorithms.

To distinguish between tangible and intangible work specialties, I utilize a large

language model with the word embedding method (Ash and Hansen, 2023). I begin

by constructing a sample of publicly listed U.S. firms and collecting their company

descriptions from Compustat for the years 1985–1990. I then restrict the sample to firms

with two-digit SIC codes between 20–49 and 71–79, excluding sectors like wholesale

and retail where scientists are less likely to start businesses. Firms are double-sorted by

capital intensity (in descending order) and the share of intangible assets (in ascending

order).18 Relying solely on the share of intangible assets on balance sheets as a proxy

for intangible assets is potentially misleading, as many forms of intangible capital (such

as know-how and customer capital) are not captured in the book value due to the

inherently conservative principles of accounting (Gourio and Rudanko, 2014). The

company descriptions of the top 100 firms are used to represent tangible specialties,

while those of the bottom 100 firms represent intangible specialties.

With the tangible and intangible corpora, I employ GPT-o3 to construct two distinct

dictionaries of scientific specialties, one associated with tangible-intensive firms and

the other with intangible-intensive firms. The prompt is described in detail in Section

A. Each resulting dictionary comprises 20 specialties that best align with the respective
18Capital intensity is defined as the ratio of capital expenditures to total assets. The share of intangible

assets is the ratio of intangible assets to total assets.
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firm’s technology and product. The contents of these dictionaries are listed in Table A8.

I then embed both dictionaries, along with the work specialties, using SciBERT.

Word embedding provides a more robust approach than the bag-of-words method for

measuring the similarity between a dictionary entry and a word by capturing semantic

relationships in a continuous vector space. Unlike the bag-of-words approach, which

relies on word frequency and ignores context, embeddings account for meaning and

word associations, enabling more accurate comparisons (Jha, Liu, and Manela, 2025;

Li, Mai, Shen, and Yan, 2021). This is particularly valuable in my context, as it handles

the synonyms of scientific disciplines more effectively. SciBERT is a transformer-based

language model specifically trained for scientific text. Developed by Beltagy, Lo, and

Cohan (2019), it is based on BERT but pre-trained on a large corpus of scientific literature,

including papers from Semantic Scholar. Its domain-specific training allows it to better

understand technical terminology and contextual nuances in scientific texts compared

to general-purpose language models.

The intangible (tangible) score measures the textual similarity between a scien-

tist’s specialty and the intangible (tangible) specialty dictionary. Table 1 shows the

descriptive statistics of the scores. The distribution of scores is presented in Figure A6.

Some specialties exhibit similarity to both the tangible and intangible dictionaries. For

instance, insect toxicology exhibits minimal difference between tangible and intangible

similarity scores. This suggests that textual similarity alone does not clearly categorize

this specialty as either tangible or intangible. For interpretability in regression analysis,

I define a binary variable: a scientist is classified as intangible if the difference between

their intangible and tangible scores falls in the top quartile, and tangible if it falls in the

bottom quartile. Specialties with intermediate differences remain unclassified. I also

include the continuous scores in robustness analyses and find similar results.

For reproducibility, I replicate the dictionary construction procedure using GPT-

o4-mini. The resulting dictionaries are reported in Table A9. The similarity between

the tangible scores generated by GPT-o3 and GPT-o4-mini is 0.980, while the similarity

for intangible scores is 0.988. Given the high concordance across models, I rely on the
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GPT-3-based scores for the main analyses.

Table A11 compares the observables of scientists based on their tangible and intangi-

ble specialties. The data reveal that female scientists are more likely to have intangible

specialties. Scientists with tangible specialties are more frequently associated with

government programs in agriculture, atomic energy, and natural resources. In con-

trast, intangible specialties are more closely linked to government programs related to

education, defense, and space.

Table A12 lists the companies with the highest proportion of employees with tangible

and intangible specialties. The results indicate that companies operating in computing,

data analytics, and systems development exhibit a higher concentration of employees

with intangible specialties. Conversely, companies engaged in materials manufacturing

and automotive parts employ a greater share of workers specializing in tangible assets.

4.2 Effects of VC on Scientists’ Entrepreneurial Entry

The linear probability model with a DiD estimator is:19

Yit = αi + δt + βIntangiblei ∗ Post1979t +Controls+ ϵit (1)

Yit is a binary variable of business formation by scientists i in year t. Intangiblei is a

binary variable that equals one if the scientist’s work specialty is classified as intangible.

Post1979t is an indicator variable for the post-ERISA reform period. αi and δt denote

individual and year fixed effects respectively. Individual fixed effects capture time-

invariant determinants of business formation of individual scientists, such as gender

and age. Year fixed effects control for aggregate shocks and common trends in business

formation activity produced by legal and institutional changes at the federal level, such
19I did not use Logit model for two reasons. First, unlike OLS, Logit model relies on maximum

likelihood estimation (MLE), which is more sensitive to the distribution of the dependent variable. Given
that StartBusiness is highly imbalanced, MLE may struggle to identify significant effects (Timoneda,
2021). Second, in nonlinear models such as Logit, the DiD estimator does not yield a straightforward
interpretation as an average treatment effect. The parallel trends assumption does not naturally hold in
nonlinear models, and using fixed effects can lead to the exclusion of groups with only 0s or 1s, reducing
the sample size and potentially introducing bias. Nevertheless, I include results with non-linear models
such as Logit and Poisson in the appendix Table A14.
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as the Economic Recovery Tax Act of 1981. Each scientist is retained in the data only until

the year when they start a business, such that β can be interpreted as the differential

change in the hazard of business formation after ERISA by scientists with intangible

and tangible specialties (Basker and Simcoe, 2021). The results are clustered at the

individual level, but all results remain significant with county level clustering.

One concern is that scientists shift their occupational specialty when local VC activity

expands. For instance, a mechanical engineer might acquire computer science skills

and launch a software firm in response to increased VC activity. In this scenario, the

VC deal flow becomes a potential omitted variable. Although I do not observe the

tangibility of occupational specialties over time, I control for the number of VC deals

in each county-year. Table A15 includes other combinations of control variables and

county-year fixed effects. The results are significant and robust.

4.2.1 Business Formation

The results in Table 3 show that following the 1979 ERISA deregulation, scientists with

more intangible work specialties are significantly more likely to establish new ventures.

The results are robust by adding a control in Column (2), year fixed effects in Column

(3), and individual scientist fixed effects in Column (4).

Figure 4 plots the coefficients and 95% confidence interval for the year interactions

with Intangible in Equation 1, using the full scientist-year panel. The beta in each year

estimates the probability of business formation by a scientist with an intangible work

specialty relative to a scientist with a tangible specialty. The figure shows that the

parallel trends assumption is satisfied, indicating that, in the absence of treatment, the

treatment and control groups would have followed similar trends over time.

Overall, the results indicate that scientists with intangible work specialties are 0.05

percentage pointsmore likely to start a business than thosewith tangiblework specialties.

Given scientists’ overall business formation rate of 0.78% before the ERISA shock, this

corresponds to a relative effect of approximately 6.41%. This evidence suggests that the

influx of private capital effectively alleviates the financial constraints faced by scientists,
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thereby fostering entrepreneurial and innovation activity.

4.2.2 Robustness Checks

I now consider the robustness of my main results.

Placebo Analysis To validate the DiD design, I conduct a placebo analysis by exploit-

ing the spatial variation in VC presence. If the estimated effect captures the influence of

VC, there should be little impact observed in counties without VC activity, as investment

opportunities generally circulate within local spaces (Sorenson and Stuart, 2001). Table

A16 presents the results separately by VC presence. Panel A restricts the sample to

counties with at least one early-stage VC deal during the sample period. Panel B includes

scientists residing in counties without any VC presence. The results show a significant

effect only in Panel A, while no statistically significant effect is observed in counties

without VC presence, consistent with the interpretation that the estimated effects are

driven by exposure to VC.

Moreover, one may argue that the credit crunches resulting from Regulation Q20

coincided with the ERISA reform, and thus the effect may instead be driven by scientists’

limited access to bank credit, which pushed them towardVC funding. However, negative

credit shocks to young firms can reduce overall business formation. To test this, I use

intrastate bank deregulation—an event within the sample period that led to banking

industry consolidation—as a source of negative credit supply to young firms, because

the consolidation increased banks’ bargaining power over small firms (Chava, Oettl,

Subramanian, and Subramanian, 2013; Hombert and Matray, 2017). The staggered DiD

results in Figure A7 show that the deregulation reduced scientists’ business formation.

Thus, the positive effect I document is unlikely to be driven by reduced bank credit.

Instead, it implies that, although credit crunches may reduce entry, the increased supply

of VCmore than offsets this decline, leading to a net positive effect on business formation.
20Regulation Q prohibited banks from paying interest on demand deposits and imposed caps on

savings deposit rates to limit competition for funds.
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Measurement of intangibility I test the main results with different definitions and

cutoff thresholds of the key independent variable, Intangible. Table A17 shows that

when I replace the binary definition of Intangible with a continuous variable as the

cross-sectional variable for the second difference, the results remain consistent with

the binary regression. Scientists with a specialty that has a higher intangibility score

are more likely to start a business after the ERISA shock, whereas those with a higher

tangibility score are not affected by the shock.

Shocks concurrent with ERISA I address the potential concern that the main effect

is primarily driven by the progress of intangible technology, whereby the booming

intangible industry in information technology coincided with the ERISA shock. For

example, information technology suddenly enabled enormous business opportunities

in 1979. As a result, computer scientists and electronic engineers may drive the results.

Table A18 presents the results of excluding Silicon Valley-related specialties from the

sample and shows that the main estimates remain significant.

Legal structure of business registration I address the concern that many firms are

registered in Delaware due to the state’s legal infrastructure, so a single state may drive

the effect of business formation. Table A20 presents the results of excluding Delaware

from the data sample and shows that the main estimates are almost unchanged.

4.3 Entrepreneurial Spawning by Private Scientists

Scientists employed in the private sector and those in academiamay differ endogenously

in their career incentives and human capital accumulation. Industry scientists gain prac-

tical experience through real-world applications, which enhances their entrepreneurial

capabilities and increases the likelihood of business formation. Would-be entrepreneurs

anticipating financing needs are more likely to start businesses when the supply of

capital expands (Samila and Sorenson, 2011). In contrast, university scientists tend to

focus on fundamental research and scientific advancements, making them less inclined

to pursue commercialization or respond to an increase in the VC supply.
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Indeed, Figure 5 and Table 4 indicate that the business formation effect is primarily

driven by the private sector, and not by those working in universities or the federal

government, or who are self-employed. Column (1) shows that private scientists with

intangible specialties had a business formation rate that is relatively 0.18 percentage

points higher than that of private scientists with tangible specialties. Given the pre-

ERISA business formation rate of 1.22%, this effect represents a 14.8% increase relative

to the baseline.

While prior work finds that VC connections facilitate university spinouts (Shane and

Stuart, 2002), Column (2) shows that university scientists rarely do so, likely reflecting

the innate type of university scientists that makes them self-selected into academia.

To further demonstrate the industry spinout effects, Figure 6 shows the bin scatter

of firm-level averages of spinout rates against the share of intangible and tangible

employees. In the top panel, the share of intangible employees is positively associated

with the spinout rate, whereas the bottom panel shows a modest negative slope for

the share of tangible employees. Taken together, the evidence supports the view that

intangible human capital within firms is a key driver of entrepreneurial spinout activity.

These results are consistent with the literature on entrepreneurial spawning (Babina

and Howell, 2024; Gompers et al., 2005) as entrepreneurial spawning occurs when

individuals become entrepreneurs because the large bureaucratic companies for which

they work are reluctant to fund their entrepreneurial ideas (Gompers et al., 2005).

Employees of large firms thus leverage their experience and expertise to create spinout

businesses. A widely cited example is Xerox’s Palo Alto Research Center (PARC), which

developed groundbreaking technologies like laser printing. Despite its innovations,

PARC struggled to gain support for commercialization. The executives resisted moving

the company beyond its traditional copier business, and most of the value from Xerox’s

inventions was captured by employees who left to start companies like Adobe and

3Com.

Although engineers employed in large firms may be motivated to leverage their

expertise to transfer technology through business formation, the lack of financing for
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potential startups to commercialize products can hinder entrepreneurial spawning.21

Moreover, though possessing technical knowledge, engineers may lack the business

acumen and network essential for entrepreneurship.22 The results in this section show

that VC reduces the financial constraints and incentivizes private scientists to spinout

from their employer.

For a sanity check, I further explore the effect in California counties and non-

California counties. Table A19 shows that the size of the spinout effect is almost nine

times larger for scientists living in California compared to those living outside of Cal-

ifornia. This confirms that California was the center of the VC industry and had the

most vibrant entrepreneurial ecosystem at that time.

4.4 Quality of Startups

The previous sections show that scientists working in the private sector, instead of

universities, were the most responsive to the VC shock. A natural question that arises

is whether these scientists represent marginal entrants into entrepreneurship—that is,

scientists who were previously unable to obtain funding due to the lower quality of

their ideas and who only entered the market following the expansion in the VC supply.

This section relies on an ex ante measure of startup quality, as ex post performance

measures are unavailable. I use business registration data to capture the business

formation of scientists, so I do not have access to follow-on firm performance data,

because these firms are private. While employment and sales data for private firms can

be accessed through census data, I do not have such access. Therefore, I use scientists’

characteristics ex ante as proxies for the quality of the businesses they started.

Productivity I use self-reported annual gross income in NRSTP as a proxy of produc-

tivity. Panel A of Table 5 presents estimates for scientists employed in private industry.
21For instance, the companies in the Central Florida Research Park (CFRP) in Orlando have struggled

to grow their size and customer base. As a result, the success of the CFRP is still overly tied to the military
budget.

22As VC funding was pouring into startups that focused not on rockets but on corporate computers,
Silicon Valley’s engineers were far less dependent on space contracts by 1969 (Miller, 2022).
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Columns (1)–(4) stratify the sample by annual gross-income quartiles (Q1–Q4). The

coefficient of interaction term is positive and statistically significant in every quartile,

rising from 0.0841 in Q1 to 0.2561 in Q4. The monotonic increase implies that scien-

tists with higher productivity responded more strongly to the VC shock. Figure 7

corroborates this result. The estimated VC effect for private-sector scientists increases

monotonically across income quartiles, and event study plots confirm that pre-treatment

trends are parallel. Columns (5)–(8) repeat the exercise for university scientists. All VC

interaction terms are statistically insignificant and display no systematic trend across

income quartiles.

Innovation Activity I examine whether the scientists’ innovation activity (i.e., patents

and publications) is related to business formation after the VC shock. It is worth noting

that although patents can serve as loan collateral and so reduce scientists’ financial

constraints, only about 2.5% of the patents issued in 1980 were pledged within five

years (Mann, 2018).23 Although some studies have shown that one-third of startups

used patents to collateralize and raise venture debt, the sample is already limited to

VC-backed startups; if the denominator were instead the universe of tech startups,

the ratio would be much lower (Hochberg et al., 2018; Serrano and Ziedonis, 2025).

Moreover, the scientists in my sample are the inventors rather than the assignees of

the patents, so they do not necessarily possess the patents granted for their inventions.

Therefore, being an inventor on patents is only used to proxy innovation activity, not

financial constraints, in this study.

In Table 6, Panel A, Columns (1) and (2) show that scientists who filed at least one

patent and were employed in the private sector were significantly more likely to spin

out. The effect is approximately 0.74 percentage points, indicating a 25.5% increase

in the likelihood of starting a business with a baseline rate of 2.90% before ERISA for

the private scientists who filed at least one patent. This substantial effect aligns with

the argument that inventors seek to appropriate the value from their inventions, but
23A key deterrent is legal uncertainty. Federal statutes such as the Patent Act treat a security interest as

a conditional transfer of title to the creditor, whereas the UCC allows the debtor to retain ownership and
merely grants the lender a security interest (Baldwin, 1994).
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large firms often capture most of the benefits, creating an incentive for them to spin

out. Columns (3) and (4) show that scientists who had published a critical journal

article were also more likely to start a business, though the effect is smaller compared

to patenting. This suggests that publishing scientific articles is less directly related

to commercialization, whereas patenting is more strongly associated with business

formation.

Although university scientists were not responsive to the VC shock in general, as

demonstrated in Section 4.3, almost half of the scientists in my sample worked in

universities, so it is worth examining whether university scientists’ patenting and

publishing activities were more attractive to VC. In Table 6, Panel B, Columns (5) and

(6) show that university scientists who had filed at least one patent were significantly

more likely to start a business. However, the share of university scientists who filed

patents is low. There is no significant effect of business formation among university

scientists who published journal articles, as shown in Columns (7) and (8). This differs

from the results in Panel A, which indicate that university scientists were less likely

to start a business compared to industry scientists and that publishing papers did not

make business formation more likely. Instead, filing patents appears to be a good signal

to VC.

Table A21 tests coefficient equality by including indicator variables for whether the

scientist was a patent inventor and whether they were a paper author, each interacted

with the intangible specialty measure. The patent–intangible interaction has a larger ef-

fect size and is statistically significant. The publication–intangible interaction is roughly

half as large and is not significant, suggesting that patenting, rather than publishing,

was the primary driver of the VC effect on scientists.

A potential concern is that scientists who were inventors or journal article authors

may differ systematically from those who were not. The sample is also highly unbal-

anced, as the majority of scientists had neither been named as inventors on patents nor

published journal articles prior to 1979. To address this, I implement propensity score

matching on observable characteristics. Table A22 reports results with propensity score
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matching, which are consistent with those in Table 6.

This section shows that the increased availability of VC incentivized private scientists,

especially those with higher productivity and innovation activity, to start a business.

This suggests that VC encouraged high-quality scientists who could not have secured

funding before to enter entrepreneurship, as opposed to marginal scientists.

5 A Simple Occupational Choice Model

The empirical evidence presented suggests that VC incentivized scientists with intangi-

ble specialties to start businesses. This raises two related questions: why are scientists

with higher productivity more responsive to the VC; and how much does VC relax the

financial constraints of scientists?

The model provides a framework to rationalize the empirical results and quantify

the relaxation of financial constraints. I now present a theoretical framework that builds

on the financial constraints and selection into entrepreneurship of Evans and Jovanovic

(1989) and differentiates physical and intangible capital. The model rationalizes the

empirical results that more productive scientists are more responsive to the VC shock.

Furthermore, I calibrate the model to quantify the changes in financial constraints before

and after ERISA.

5.1 Model Setup

I start the model with two types of scientists: those with intangible specialties and those

with tangible specialties. They have homogeneous wealth distribution, denoted by a,

which is interpreted as net family assets. They also have homogeneous productivity

distribution, denoted by z, which determines the productivity of capital in entrepreneur-

ship. I assume that log(z) ∼ N (µz, σ2
z ), as innovations are usually characterized by a

skewed distribution in the literature.24

Output is produced with a Cobb-Douglas aggregator over two types of capital: k1 is
24In a similar vein, variables such as deal size and valuation in the VC literature are also skewed and

heavy-tailed, so are typically modeled as Pareto or lognormal.
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physical capital and k2 is intangible capital (Crouzet and Eberly, 2023). The parameter

η denotes the share of intangible capital in production. Scientists with intangible

specialties have a higher ηintangible, whereas those with tangible specialties have a lower

ηtangible. The parameter α is the returns-to-scale parameter, which differs between

scientists with intangible and tangible specialties.

y = z
(

k 1−η
1 k η

2

)α

Scientists also face a wage opportunity w, representing the income they would earn

if they remained in salaried employment. The wages of scientists with different types

of specialties are slightly different based on my data, with wintangible > wtangible. The

occupational choice is static and discrete: a scientist chooses entrepreneurship if the

entrepreneurial income exceeds the wage alternative. The entrepreneurial income is

given by

max π(z, k1, k2, a) = z
(

k 1−η
1 k η

2

)α
− r(k1 + k2 − a),with 0 < α < 1, r > 1,

where α is the elasticity of outputwith respect to capital and r is the gross interest rate.

The first term captures revenue as a Cobb-Douglas function of capital and productivity;

the second term reflects the cost of financing in excess of own wealth and invested

capital.

Due to financing constraints, scientists can invest at most I = λa + b in en-

trepreneurial activities, where λ captures the access to external capital per unit of

wealth. The emergence of VC could relax constraints by providing external financing

and so increase λ. One possible channel is through better monitoring.25

Only k1 is pledgeable to reflect the sunkness (i.e., low liquidation value) of intangible
25For example, assume the cost of defaulting is nI, where n is the monitoring intensity. The cost

of repayment is r(I − a). Therefore, the maximum amount that a person could obtain from external
financing is λ = r

r−n a. If VC increases the monitoring intensity n, then λ increases.
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assets imposes tighter liquidity constraints. Borrowing b must satisfy

b ≤ ϕ k1, ϕ ∈ [0, 1].

5.2 Model Results and Implications

This section shows why scientists with higher productivity can be more constrained.

The scientist chooses entrepreneurship if π(z, λ, a) ≥ w + ra.

Lemma 1. The optimal level of investment is

I = min

{(ακz
r

) 1
1−α ,

λa
1 − ϕ(1 − η)

}
.

where the first term denotes the unconstrained optimal investment and the second term the

maximum feasible level under financing constraints.

Proof in Appendix B. The higher the productivity z, the higher the unconstrained

optimal investment, making it more likely that the entrepreneur is constrained. Venture

capital raises λ, which increases the maximum feasible investment level and relaxes

financing constraints, particularly for scientists with higher z.

Lemma 1 rationalizes the empirical finding that scientists who are named inventors

on patents (i.e., those with higher z) are more responsive to the VC shock. This is

because they have a higher optimal level of investment and are therefore more likely to

be constrained.

5.3 Model Calibration

This section is to quantify how much VC relaxes financial constraints based on the

empirical results. The central parameter in this model is λ, which determines the

financial constraints. A higher λ value imposes higher financial constraints and reduces

the entrepreneurial entry decision.

The calibration is to find λs that match the entry rate of scientists pre and post

ERISA, respectively. The parameters are summarized in Table 7. Whenever available,
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I use values from the literature. The capital output elasticity α defines the shape of

the entrepreneurial production function and the diminishing returns to capital and is

recovered from the economic rents accruing to the firm parameter in Crouzet and Eberly

(2023). Scientists with intangible and tangible specialites have different α, respectively.

The gross interest rate r equals 1.108, which is from the 10-year treasury yield in January

1980. w wage is the gross annual income as self-reported by the scientists in the NRSTP.

Wages of scientists who were already self-employed are not included. The average

annual gross income is reported around 1965 and scaled to 1980 values in the model.

With the parameters, pre and post ERISA λ are recovered from the observed entry

rates before and after the regulatory shock. Figure 9 plots the model-predicted entry

probability against wealth for the calibrated λ̂s, using scientists with intangible special-

ties and tangible specialties, respectively. The two lines represent the relationship with

calibrated λ̂s before and after the ERISA shock. It shows that ERISA relaxed the financial

constraints of intangible scientists by 69.2% through the increase of λ, while only 41.5%

for tangible scientists. This pattern is consistent with the data that both tangible and

intangible scientists are responsive to the ERISA shock but intangible scientists are even

more responsive.

One possible channel inferred from the model is that because tangible scientists

have more physical capital to pledge, they need less VC financing and so smaller λs.

Subsequently, when the ERISA increased the supply of VC, their changes of λs are

smaller than intangible scientists.

Although λ̂ is an informative measure of the fraction of wealth that can be externally

financed, it should be interpreted with caution. The estimate rests on assumptions about

the distribution of productivity, represents VC solely through borrowing limits against

wealth, and ignores possible interactions between wage and ability. Subject to these

caveats, the results highlight the potency of VC in easing financial frictions: despite the

market’s small size in 1980, the reform substantially lowered scientists’ entry barriers.

This suggests that regions such as Europe could unlock considerable entrepreneurial

potential if pension fund regulations on VC investment were similarly relaxed.
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6 Aggregate Effects of VC on Industry Growth

The previous results have shown the causal effect of a change in the supply of VC on

scientists’ entrepreneurial entry. These findings raise an important question: how do

such changes ultimately affect industry productivity and real outcomes? By document-

ing that VC has a positive effect on industry size and value added, I provide evidence

for a channel for the rise of the intangible economy in the U.S.

Consistent with themethod used in Section 4.1, I restrict the sample industries to two-

digit SIC codes between 20–49 and 71–79. Industries are double-sorted by the average

capital intensity (in descending order) and the share of intangible assets (in ascending

order) of the firms. The top half of industries are classified as tangible industries, and

the bottom half as intangible industries.

I use County Business Patterns (CBP) data files from 1974 to 1984 for the business

formation data. The data collection process heavily relied on administrative records,

particularly from the Internal Revenue Service (IRS), and existing Census Bureau sur-

veys, with employer-reported information forming the foundation of the CBP. The IRS’s

quarterly payroll file26 served as the cornerstone for collecting payroll data, especially

for single-establishment employers. The VC investment data comes from VentureXpert.

This is the only database that covers the VC and PE deals in 1970s, making it a valuable

resource for the analysis in this study (Kaplan and Lerner, 2017).

I estimate the following specification:

Yict = βIntangiblei × Post1979t + ηi + ηct + ϵict (2)

Yict represents the outcome variables, including the number of establishments and

employment in industry i, county c, and year t. Intangiblei is a binary variable that

equals one if the SIC two-digit industry is classified as intangible. Post1979t is an in-

dicator variable for the post-ERISA reform period. ηi and ηct denote individual and

county-year fixed effects respectively. Industry fixed effects capture time-invariant deter-
26Treasury Form 941.
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minants of industries, such as technological intensity, capital structure, and regulatory

environment. County-year fixed effects control for localized macroeconomic shocks,

labor market conditions, and demographic trends that vary over time.

Counties with at least one VC investment during 1979–1986 are classified as having

VC presence. I do not impose a higher threshold (e.g., more than ten deals), since

VentureXpert may not fully capture all VC investments in that period, and a stricter

cutoff would exclude many counties that may have had deals. Moreover, VC activity is

highly concentrated in theU.S., with only a small fraction of counties havingVCpresence.

Therefore, I adopt a one-deal threshold to allow for a more balanced comparison.

Table 8 presents the effects of VC on industry-level outcomes. Column (2) indicates

that, following the ERISA reform, the average number of employees in intangible indus-

tries increased by 106. Relative to the pre-ERISA mean of 398 employees per industry,

this corresponds to a 27% increase. Columns (3) and (4) demonstrate that this effect is

concentrated in counties with VC activity. In these counties, employment in intangible

industries increased by an average of 592 post-ERISA. These patterns are consistent

across measures based on the number of establishments, both overall and those with

1–4 employees. These findings suggest that VC played a significant role in expanding

the size of intangible industries in the post-ERISA period.

A potential concern is that the estimates may simply capture a general rising trend

in the intangible industry. To address this issue, I redefine the dependent variable as

the industry-level growth rate in each county. Table A23 shows that VC also facilitated

the growth rate of intangible industries, not merely their levels.

To assess the robustness of the measure of intangibility, I cross-validate it using the

liquidation recovery rate of Property, Plant, and Equipment (PP&E) from Kermani

and Ma (2023). The liquidation recovery rates in the data are calculated as the ratio of

liquidation value to replacement cost. Industries with lower PPE recovery rates tend to

face tighter borrowing constraints and exhibit higher levels of intangibility. Intangibles

are especially pronounced in industries where physical assets are more specific. Table

A24 examines VC’s heterogeneous effects across industries with varying recovery rates.
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The results are consistent with those in Table 8, showing a relative decline in industry

size post-ERISA among industries with high recovery rates.

These results support the hypothesis that VC contributed to the growth of intangible

industries. The findings on the number of establishments are consistent withmicro-level

evidence of increased entrepreneurial entry by scientists and imply a broader effect on

the population outside of scientists.

7 Conclusion

This paper contributes to the growing literature on technology entrepreneurship by

demonstrating that an expanded supply of VC can incentivize scientists to create busi-

nesses. Exploiting the 1979 ERISA shock to the VC supply, I show that the rate of

business formation among scientists doubled, and was especially significant among

scientists with intangible specialties. This is because VC alleviates the financing con-

straints for scientists whose projects lack collateral and in which traditional banks are

typically unwilling to invest.

I further investigate the heterogeneity underlying the main results. I find that

scientists employed in the private sector exhibited a greater responsiveness to the VC

supply shock compared to those affiliated with universities. Private scientists with

a higher annual gross income and with prior patenting activity were more likely to

spin out. These findings suggest that VC encourages high-quality startups. Through

county-industry-level analysis, I demonstrate that these effects ultimately impact real

outcomes. Intangible industries in the counties with a VC presence grow more in terms

of firm counts and number of employees. To rationalize these empirical findings, I use

a simple framework in which scientists decide between remaining wage earners and

becoming entrepreneurs. I then calibrate the financial constraints and quantify how VC

alleviates them.

This paper has clear policy implications. Governments are increasingly turning to

policies to improve access to financing for private firms. VC plays an important role
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as a specialized financial intermediary in incentivizing technology entrepreneurship,

yet the policy tools usually center around publicly-backed VC and tax incentives for

equity investors. The results in this paper show that the allocation of pension funds to

VCs can incentivize high-quality technology entrepreneurship. This resonates with the

ongoing debate over increasing pension fund allocations to VC in the United Kingdom27;

and a recent White House Executive Order directs the DOL to clarify ERISA guidance

so that individual 401(k) investors can access alternative assets (e.g., private equity),

expanding access beyond large pension fund managers28. By exploiting the 1979 ERISA

reform, which permitted private pension funds to invest in VC, I show that such policy

changes can produce substantial spillover effects, prompting scientists to establish new

ventures and catalyze innovation-led growth.

27https://www.gov.uk/government/collections/mansion-house-2023. Last retrieved on September 23,
2025.

28https://www.whitehouse.gov/presidential-actions/2025/08/democratizing-access-to-alternative-
assets-for-401k-investors/. Last retrieved on September 23, 2025.
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Figures

Figure 1: Examples of the Raw Data

(a) AWS (b) NRSTP: Entries

(c) NRSTP: Work Specialty Codebook (d) NRSTP: University Codebook

Notes: (a) is an example of an AMS entry. Dr. Malcolm J. Abzug (April 13, 1920), an
expert in space and flight mechanics, held prominent roles in aerodynamics, missile
systems, and space research. Educated at MIT (Bachelor), Polytechnic Institute of
Brooklyn (Master’s), and UCLA (PhD), he contributed significantly to Douglas Aircraft
Co. and U.S. Air Corps. His research focused on flight mechanics, fluid mechanics,
and control systems. (b) shows the raw dataset from the NRSTP. Each line represents
one scientist’s entry. The dataset is structured so that different positions within a row
correspond to different variables. Each variable is encoded using specific numerical or
categorical codes, where the position of the code determines which variable it represents.
(c) and (d) display the original codebooks of the NRSTP. These codebooks serve as
reference documents that map each code in the dataset to its corresponding meaning.
When the ORC could not accurately identify certain words, a large language model was
used to fill in missing or incorrectly spelled letters.
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Figure 2: Geographical Distribution of the Scientists and Engineers

Notes: This figure plots the geographical distribution of the scientists, using county
delineations from the 1990 census. The historical county FIPS crosswalk follows Eckert,
Gvirtz, Liang, and Peters (2020). The scientist counts are weighted to account for
differences in population weights between 1990 and 2010. For visualization purposes,
the color scale is capped at 400. Counties with more than 400 scientists are represented
using the same color as those with exactly 400 scientists.
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Figure 3: Business Formation Trend in the U.S.

Notes: This figure plots the number of businesses incorporated in the U.S. and those
founded by scientists. The data is from OpenCorporates. Business formation counts
are normalized to 1978 (set to 1) for comparison. The total U.S. business formation
includes all newly incorporated businesses, while scientist-founded businesses refer
to firms established by scientists in my data sample. The data includes only business
registrations where both the officers’ names and company addresses are available.
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Figure 4: Effects of VC on Scientists’ Entrepreneurial Entry

Notes: This figure displays the coefficient of year indicator variables interacted with the
intangible specialty. The specification is from the difference-in-differences estimation
fromColumn (4) in the Table 3. The vertical lines represent the 95% confidence intervals
for the coefficient estimates.
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Figure 6: Intangible Employee Share and Spinout Rate at Firm Level

Notes: This figure displays the correlation between the spinout rate and its share of
intangible (or tangible) employees at firm level. The share of intangible employees is
defined as the number of intangible scientists divided by the total number of scientists
in my data sample at the firm. Each dot shows the mean of firms whose observations
fall within the corresponding bin. The green line represents the fitted values from a
simple firm-level OLS regression with the spinout rate as the outcome variable and the
share of intangible (or tangible) employees as the explanatory variable.
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Figure 9: Financial Constraints and Business Formation Rate

Notes: This figure illustrates the implied entry probability as a function of wealth a,
displayed on a logarithmic scale for the x-axis. The blue line represents λpre and the
green line represents λpost. ERISA relaxed the financial constraints and increased λ.
The required parameters are calibrated to the values in Table 7.
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Figure 10: Effects of VC on Industry Size

Notes: These figures display the coefficients from the difference-in-differences estimation
in Table 8. The subfigure on the Number of Employees is from Columns (3) and (4).
The subfigure on the Number of Establishments with 1-4 Employees is from Columns
(7) and (8). The figures illustrate that the treatment effects of VC are precisely in the
places where there was VC investment and which had limited spillover to other counties.
The vertical lines represent the 95% confidence intervals for the coefficient estimates.
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Tables

Table 1: Summary Statistics on Business Formation, Patenting, and Publication

Statistic Count Min 50% Mean 95% 99% Max Std. Dev.
StartBusiness 458,703 0 0 0.03 0 1 1 0.17
BizCount 458,703 0 0 0.06 0 1 57 0.55
FilePatent 458,703 0 0 0.09 1 1 1 0.28
PatCount 458,703 0 0 0.37 1 8 356 2.75
HasPublication 458,703 0 0 0.10 1 1 1 0.29
PaperCount 458,703 0 0 2.12 7 53 1,273 15.11
Intangible Score 458,703 0.52 0.79 0.79 0.84 0.87 0.89 0.04
Tangible Score 458,703 0.51 0.78 0.78 0.89 0.95 0.95 0.05
Gross Income 370,120 100 12000 13186.12 25000 40000 99900 7719.46

Notes: This table presents the summary statistics of the variables related to the patenting
and publication activities of scientists. All variables are at the individual level. BizCount
represents the number of businesses formed by a scientist. StartBusiness equals one if a
scientist started at least one firm. PatCount is the number of patents onwhich the scientist is
listed as an inventor. FilePatent equals one if a scientist filed at least one patent. PaperCount
is the number of journal publications authored by the scientist. HasPublication equals one
if a scientist published at least one journal article. Intangible Score and Tangible Score are
calculated based on the textual similarity between the work specialty of the scientists and
the tangible and intangible dictionaries. Gross income is self-reported in the NRSTP.
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Table 2: Top Intangible and Tangible Specialties

Tangible Specialties Intangible Specialties
Mechanical engineering Operations research
Electrical engineering Theory and practice of computation
Chemical engineering Mathematics of resource use
Plastics engineering Operations analysis
Aerospace engineering Communication science
Civil engineering Project management and control
Textile engineering Epidemiology
Materials engineering Evolution
Electronics engineering Information system design
Metallurgical engineering Statistics

Notes: The table reports the top intangible and tangible scientific specialties based
on textual similarity. Mechanical engineering has the highest difference between
the tangible and intangible scores, indicating that it is highly tangible. In contrast,
theory and practice of computation has the lowest difference between the tangible
and intangible scores, suggesting it is the most intangible specialty.
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Table 3: Effect of VC on Scientists’ Entrepreneurial Entry

Dependent Variable: 100 · 1 [StartBusinesst | NoBusinesst−1]
(1) (2) (3) (4)

Post1979 × Intangible 0.0329∗∗∗ 0.0215∗∗∗ 0.0213∗∗∗ 0.0506∗∗∗
(0.0069) (0.0069) (0.0069) (0.0074)

Intangible 0.0158∗∗∗ 0.0145∗∗∗ 0.0144∗∗∗
(0.0038) (0.0038) (0.0038)

Post1979 0.0602∗∗∗ 0.0395∗∗∗
(0.0043) (0.0042)

Constant 0.0744∗∗∗ 0.0720∗∗∗
(0.0025) (0.0025)

Control Yes Yes Yes
Year FE Yes Yes
Individual FE Yes
Observations 4,250,561 4,250,561 4,250,561 4,250,561
R2 0.00015 0.00043 0.00045 0.15388

Notes: This table reports the difference-in-differences estimates of the ERISA effect
on business formation by scientists from 1970 to 1986. The dependent variable is a
binary indicator of whether a scientist started a business in a given year. Intangible
is a binary variable indicating whether the scientist’s work specialty is classified as
intangible based on the LLM classification. Post1979 equals one for years after 1978. All
specifications include individual fixed effects and year fixed effects. Standard errors
are clustered at the individual level. * p < .10, ** p < .05, *** p < .01.
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Table 4: Heterogeneous Effect on Scientists’ Entrepreneurial Entry by Type of Employer

Dependent Variable: 100 · 1 [StartBusinesst | NoBusinesst−1]
(1) (2) (3) (4)

Private
Industry

College and
University

Federal
Government

Self
Employed

Post1979 × Intangible 0.1828∗∗∗ 0.0053 0.0392 0.0376
(0.0171) (0.0125) (0.0331) (0.0775)

Control Yes Yes Yes Yes
Individual FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Observations 1,563,067 1,262,682 200,679 75,748
R2 0.14871 0.15071 0.14820 0.22156

Notes: This table reports the difference-in-differences estimates of the ERISA effect
on business formation by scientists from 1970 to 1986. The sample is split based on
the type of employer. The type of employer is divided into four categories: private
industry when the scientist works for a for-profit firm, college and university, federal
government civilian employee, and self-employed. The dependent variable is a binary
indicator of whether a scientist started a business in a given year. Intangible is a binary
variable indicating whether the scientist’s work specialty is classified as intangible based
on the LLM classification. Post1979 equals one for years after 1978. All specifications
include individual fixed effects and year fixed effects. Standard errors are clustered at
the individual level. * p < .10, ** p < .05, *** p < .01.

56



Table 5: Heterogeneous Effect on Scientists’ Entrepreneurial Entry by Productivity

Dependent Variable: 100 · 1 [StartBusinesst | NoBusinesst−1]

Panel A: Scientists Working in Private Industry or Sector
(1) (2) (3) (4)
Q1 Q2 Q3 Q4

Post1979 × Intangible 0.0841∗∗∗ 0.0997∗∗∗ 0.2083∗∗∗ 0.2561∗∗∗
(0.0317) (0.0332) (0.0370) (0.0368)

Control Yes Yes Yes Yes
Individual FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Observations 373,070 331,704 340,646 341,314
R2 0.15877 0.14569 0.13976 0.16011

Panel B: Scientists Working for Colleges or Universities
(5) (6) (7) (8)
Q1 Q2 Q3 Q4

Post1979 × Intangible -0.0357 -0.0009 0.0358 -0.0226
(0.0240) (0.0259) (0.0269) (0.0318)

Control Yes Yes Yes Yes
Individual FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Observations 238,763 268,001 305,496 295,606
R2 0.14527 0.13549 0.15381 0.15780

Notes: This table presents difference-in-differences estimates of the impact of the 1979
ERISA reform on business formation by scientists over the period 1970–1986. The
sample is stratified by quartiles of self-reported gross income, defined separately for
private-sector and university-employed scientists. For scientists in the private sector,
the gross income quartile thresholds are $100 (0th percentile), $10,000 (25th), $13,200
(50th), $17,400 (75th), and $99,900 (100th). For university scientists, the corresponding
thresholds are $100 (0th percentile), $7,500 (25th), $11,000 (50th), $15,000 (75th), and
$99,900 (100th). The dependent variable is a binary indicator of whether a scientist
started a business in a given year. Intangible is a binary variable indicating whether
the scientist’s work specialty is classified as intangible based on the LLM classification.
Post1979 equals one for years after 1978. All specifications include individual fixed
effects and year fixed effects. Standard errors are clustered at the individual level. * p <
.10, ** p < .05, *** p < .01.
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Table 6: Heterogeneous Effect on Scientists’ Entrepreneurial Entry by Innovation
Activity

Dependent Variable: 100 · 1 [StartBusinesst | NoBusinesst−1]

Panel A: Scientists Working in Private Industry or Sector
(1) (2) (3) (4)

Has Patent No Patent Has
Publication

No
Publication

Post1979 × Intangible 0.7385∗∗∗ 0.1664∗∗∗ 0.3758∗∗∗ 0.1766∗∗∗
(0.1123) (0.0171) (0.1454) (0.0171)

Control Yes Yes Yes Yes
Individual FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Observations 289,261 1,273,806 30,589 1,532,478
R2 0.14593 0.14937 0.14839 0.14851

Panel B: Scientists Working for Colleges or Universities
(5) (6) (7) (8)

Has Patent No Patent Has
Publication

No
Publication

Post1979 × Intangible 0.8627∗∗∗ 0.0028 0.0092 0.0039
(0.2252) (0.0123) (0.0325) (0.0135)

Control Yes Yes Yes Yes
Individual FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Observations 25,165 1,237,517 229,379 1,033,303
R2 0.15228 0.15046 0.15573 0.14881

Notes: This table reports the difference-in-differences estimates of the ERISA effect on
business formation by scientists from 1970 to 1986. The sample is split based on the
type of employer and whether the scientists filed a patent or published a journal article
before 1979. The dependent variable is a binary indicator of whether a scientist started a
business in a given year. Intangible is a binary variable indicating whether the scientist’s
work specialty is classified as intangible based on the LLM classification. Post1979 equals
one for years after 1978. All specifications include individual fixed effects and year fixed
effects. Standard errors are clustered at the individual level. * p < .10, ** p < .05, *** p <
.01.
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Table 7: Calibrated Parameters and Values

Parameter Description Data Source Value
αintangible Return to scale of the production process for

intangible scientists
Calibration data of high-tech firms (primarily
software and IT firms) from 1966 to 1984 (Crouzet
and Eberly, 2023)

0.845

αtangible Return to scale of the production process for
tangible scientists

Calibration data of manufacturing firms from 1966
to 1984 (Crouzet and Eberly, 2023)

0.940

r Gross interest rate 10 Year Treasury Yield in January 1980 1.108
wintangible Average annual gross income for intangible

scientists
NRSTP in 1965 and scaled to 1980 values 13767.31

wtangible Average annual gross income for tangible scientists NRSTP in 1965 and scaled to 1980 values 13130.42
ηintangible Share of intangible capital in production for

intangible scientists
Calibration data of high-tech firms from 1966 to
1984 (Crouzet and Eberly, 2023)

0.324

ηtangible Share of intangible capital in production for tangible
scientists

Calibration data of manufacturing firms from 1966
to 1984 (Crouzet and Eberly, 2023)

0.176

µa Mean of log wealth Derived from net family assets in the 1976 survey
(Evans and Jovanovic, 1989)

8.91

σa Std. of log wealth Derived from net family assets in the 1976 survey
(Evans and Jovanovic, 1989)

1.41

µz Mean of entrepreneurial ability (Evans and Jovanovic, 1989) 2.00
σz Std. of entrepreneurial ability (Evans and Jovanovic, 1989) 0.90

This table presents the values used for the model calibration. Assume family assets X is log-normally distributed and Y = ln X. Let µ
and σ denote the mean and standard deviation of X. Then the variance of Y is σ2

ln = ln
(
1 + σ2/µ2) and its mean is µln = ln µ − 1

2 σ2
ln. With

µ = 20,009.2 and σ = 50,053.3 from the paper, I obtain σln ≈ 1.41 and µln ≈ 8.91.
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Table 8: Effect of VC on Industry Size

Panel A: Employment

Dependent Variable: Number of Employees
(1) (2) (3) (4)

Full Sample VC County Non VC
County

Post1979 × Intangible 85.82∗∗∗ 106.2∗∗∗ 592.0∗∗∗ 28.70∗∗∗
(9.580) (10.67) (68.31) (2.297)

Industry FE Yes Yes Yes Yes
Year FE Yes
County FE Yes
Year-County FE Yes Yes Yes
Observations 990,668 990,668 136,564 854,104
R2 0.35723 0.36191 0.40690 0.22228

Panel B: Establishments

Dependent Variable: All Sizes 1-4 Employees
(5) (6) (7) (8)

VC County Non VC
County

VC County Non VC
County

Post1979 × Intangible 32.25∗∗∗ 1.847∗∗∗ 16.44∗∗∗ 0.8349∗∗∗
(3.445) (0.0935) (2.099) (0.0558)

Industry FE Yes Yes Yes Yes
Year-County FE Yes Yes Yes Yes
Observations 136,564 854,104 136,564 854,104
R2 0.40348 0.37004 0.35618 0.33564

Notes: This table reports the difference-in-differences estimates of the ERISA effect on
industry size from 1974 to 1986. VC County represents a subsample with counties that
had at least one VC investment during 1979-1986. Non VCCounty is the opposite. Number
of Employees is the number of paid employees during the payroll period. Establishments
is the number of establishments with paid employees, categorized by employment-
size class (e.g., 1–4 employees). Intangible is a binary variable indicating whether the
industry is classified as intangible. Post1979 equals one for years after 1978. Standard
errors are clustered at the county level. * p < .10, ** p < .05, *** p < .01.
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Online Appendix for

“Venture Capital and Scientists’ Selection into Entrepreneurship”

Xuelai Li

September 2025

A Construction of Specialty Dictionaries

The tangible and intangible specialty dictionaries are constructed using GPT (including

o3 and o4-mini). Firms are double-sorted using COMPUSTAT data based on the share

of intangible assets and the capital expenditure-to-assets ratio. Company descriptions

and financials of the top 100 firms at each extreme are extracted and saved as separate

files. The GPT prompt is:

You are provided with three files:

tangible_companies.csv – Descriptions of the top tangible companies of

the 1980s.

intangible_companies.csv – Descriptions of the top intangible companies

of the 1980s.

specialty.csv – A list of scientists’ specialties, one specialty per

line.

Task

1. From specialty.csv, select 20 specialties most relevant to

tangible_companies.csv.

2. From specialty.csv, select 20 specialties most relevant to

intangible_companies.csv.

3. Base the relevance on how closely each specialty aligns with the

companies’ technologies and products.

4. Ensure all 40 chosen specialties are unique (no duplicates across the
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two lists).

Output

Return only the following Python lists, without comments or explanations.

B Model

First consider the choice of k1 and k2 for the entrepreneur. F.O.C. gives:

k2

k1
=

η

1 − η
=⇒ k1 = (1 − η)I, k2 = η I.

Hence the pledgeability constraint implies

I ≤ λa + b ≤ λa + ϕ(1 − η)I =⇒ I ≤ Imax ≡ λa
1 − ϕ(1 − η)

.

Define κ ≡
[
ηη(1 − η)1−η

]α for simplicity. The problem reduces from finding k1

and k2 to only finding I:

max
0≤I≤Imax

π(I) = z κ Iα − r (I − a).

F.O.C ακzIα−1 − r = 0

The optimal I∗ is ( ακz
r )

1
1−α

The entrepreneur will be unconstrained whenever the optimal I∗ is below Imax, i.e.

z ≤ r
ακ

(
λa

1 − ϕ(1 − η)
)1−α

Solving for the ability threshold below and above λa
1−ϕ(1−η)

respectively:

w1−α
( r

ακ

)α
(1 − α)α−1 ≤ z ≤ (

λa
1 − ϕ(1 − η)

)1−α
( r

ακ

)
(1’)
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or

z > max
[
(

λa
1 − ϕ(1 − η)

)1−α
( r

ακ

)
, w(

λa
1 − ϕ(1 − η)

)−α + r(
λa

1 − ϕ(1 − η)
)1−α

]
(2’)

If z satisfies either constraint, the individual chooses entrepreneurship.

C Appendix Figures

Figure A1: Original Document of the ERISA Reform in 1979

Notes: This graph shows Title 29 of the U.S. Code of Federal Regulations Part 2550 of 1979.
This is the final regulation on the "Rules and Regulations for Fiduciary Responsibility;
Investment of Plan Assets Under the ’Prudence’ Rule". The amendment was published
in the Federal Register on June 26, 1979. Federal agencies typically begin drafting
amendments well before the public discussion. The discussions within the Department
of Labor (DOL) regarding fiduciary investment duties likely started as early as 1978. The
DoL would publish a Notice of Proposed Rulemaking (NPRM) in the Federal Register
to inform the public of the proposed changes and invite comments. This step often
occurs 6–18 months before the final rule is published. For the § 2550.404a-1 amendment,
the NPRM likely appeared in the Federal Register in late 1978 or early 1979. Following
the NPRM, there would have been a public comment period (typically 30–90 days)
during which stakeholders could provide feedback. After the comment period, the
DOL would review the feedback, potentially revise the proposal, and prepare the final
rule for publication.
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Figure A2: VC Investment and ERISA Reform

Notes: This figure plots the total amount of VC investment and the number of deals in
the U.S. Note that these values are underestimated due to incomplete data coverage
in the dataset, as many of the deals did not disclose the deal sizes. The data comes
from Venture Economics, a database focusing on the venture capital and private equity
sectors. The database includes fields such as investors, invested startups, and fund
profiles. This is the only database that covers the VC and PE deals in 1970s, making
it a valuable resource for the analysis in this study. Many foundational papers in the
entrepreneurial finance literature use this database (Kortum and Lerner, 2000; Ewens,
Nanda, and Rhodes-Kropf, 2018).
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Figure A3: Birth Year of the Scientists

Notes: This figure plots the distribution of scientists’ birth years. The birth year is self-
reported in the AMS data. Since this information is not reported in the NRSTP data,
the birth year of scientists recorded in the NRSTP is calculated based on the year and
level of the highest degree.
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Figure A4: Patents and Publications by Scientists

Notes: This figure plots the number of granted patents filed and published papers by
scientists in my data sample over the years. The dataset includes only patents that
were granted; applications that did not result in a grant are not observed. Only papers
published in journals are included as publications.
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Figure A5: Early-Stage VC Deals by Industry

Notes: This figure plots the number of VC deals from 1960 to 1990 based on the two-digit
SIC codes. The top five industries by deal count in 1990 are selected. The data is from
Venture Economics.
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Figure A6: Difference between Tangible and Intangible Scores

Notes: This figure plots the tangible and intangible scores for each specialty. Each point
represents a unique scientist, with their scores derived from their work specialty. The 45-
degree dashed lines represent boundaries where the difference between the intangible
and tangible scores equals the first and third quartiles of the empirical distribution. The
red line corresponds to the 75th percentile of the difference (intangible minus tangible),
while the blue line denotes the 25th percentile.
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Figure A7: Negative Credit Shock to Scientists’ Entrepreneurial Entry

Notes: This figure plots the estimated coefficients from the event study based on Equation
BusinessFormationist = βDeregulationst + ηi + ηt + ϵist. Deregulationst is a dummy
variable that equals one in the year following the implementation of intrastate banking
deregulation in a given state. Since intrastate banking deregulation included both M&A
and de novo deregulation, I follow the previous literature (Chava et al., 2013; Jayaratne
and Strahan, 1996) in classifying a state as “intrastate deregulated” in the year after
either M&A or de novo deregulation occurred. The green lines represent estimates
based on Callaway and Sant’Anna (2021), which report group-time average treatment
effects using never-treated units as the control. The blue lines are based on Sun and
Abraham (2021), which present event-time treatment effects using never-treated or
not-yet-treated units as the control. The results highlight the heterogeneous effects of
intrastate bank deregulation on business formation across different specialties. The
vertical lines denote 95% confidence intervals for the coefficient estimates. The results
indicate a negative impact of intrastate bank deregulation on business formation among
scientists with tangible specialties. Specifically, the estimated average treatment effect
(ATT) of scientists is -0.137, with a standard error of 0.0167 based on Callaway and
Sant’Anna (2021).
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D Appendix Tables

Table A1: Level and Year of Highest Degree by Data Source

Level of Highest Degree Count
Bachelor 142,242
Master’s 130,488
MD 10,996
PhD 160,082
PhD+ 2,336

Notes: Compared to AMS, the NRSTP offers a broader view of the workforce.
The NRSTP covers a wider range of fields and is more oriented toward workforce
analysis, while AMS emphasizes individual recognition and contributions within
the scientific community. AMS primarily includes renowned scientists, most of
whom are affiliated with universities and hold PhDs. In contrast, the NRSTP
encompasses a broader group of individuals engaged in R&D activities, many of
whom may not possess advanced degrees. PhD+ means that the person has more
than one PhD degree, or has both PhD and MD degrees.
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Table A2: Institution of Highest Degree

University of Highest Degree Count
University of Michigan-Ann Arbor 10,480
Columbia University in the City of New York 10,060
Harvard University 9,728
University of California-Berkeley 8,302
New York University 7,756
Purdue University 7,529
University of Wisconsin 7,499
Ohio State University 7,378
Massachusetts Institute of Technology 7,287
University of Chicago 7,142

Notes: This table reports the institution of the highest degree of the scientists and
engineers in my sample. Universities within the University of California system
have missing values because many records only include the UC system but do not
specify the specific campus attended.
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Table A3: Average Pre-Tax Income by Income Quantiles ($ 2018)

Quantile NRSTP PSZ
Bottom 50% 42,061 13,761
Middle 40% 81,616 40,050
Top 10% 124,817 132,719
Top 5% 164,118 193,714
Top 1% 249,437 472,005
Top 0.5% 344,038 687,512
Top 0.001% 520,178 20,274,790

Notes: This table shows the scientists’ income distribution and compares it with that
of the general U.S. population. The PSZ data is from the 2022 version of TB3 from
Distributional National Accounts by Piketty, Saez, and Zucman (2018): https://gabriel-
zucman.eu/usdina/. Last retrieved on September 23, 2025.
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Table A4: Type of Employer

Employment Sector Count
Private Industry or Business 171,484
College or University 138,280
State, Local, or Other Government (except educational institution) 39,647
Federal Government Civilian Employee 27,968
Other Educational Institution 15,421
Military Service, Active Duty 11,529
Nonprofit Organization 10,913
Self-Employed 9,162
Other 2,167

Notes: This table reports the types of employers for the scientists and engineers
in my sample. Over the years, the classification of employer type has become
increasingly granular. I manually create a crosswalk file to harmonize these
classifications. In 1970, the category “State, local, or other government (except
educational institution)" included entities such as the USPHS Commissioned
Corps, U.S. Weather Bureau, State Government, International Agencies, and
Other Government Agencies. Research centers managed by for-profit organiza-
tions are classified under “Private Industry or Business," while those managed
by educational institutions are classified as “College or University."
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Table A5: Top Employers of Scientists and Engineers

Firm Name NAICS Industry Name Count
DuPont de Nemours, Inc. Chemical Manufacturing 4,792
International Business Machines Computer and Electronic Product 3,198
Union Carbide Corp Chemical Manufacturing 3,110
General Electric Company Electrical Equipment 2,674
Shell Oil Co. Petroleum and Coal Products 2,228
Dow Chemical Company Chemical Manufacturing 2,011
Monsanto Co Chemical Manufacturing 1,653
Humble Oil & Refining Co Petroleum and Coal Products 1,348
North American Rockwell Aerospace Product and Parts 1,311
Eastman Kodak Co Photographic and Optical Equipment 1,165
Mobil Oil Corp Petroleum and Coal Products 1,130
Lockheed Aerospace Product and Parts 1,095
Texaco Inc Petroleum and Coal Products 1,093
Allied Chemical Corp Chemical Manufacturing 1,089
Esso Chem Co Inc Chemical Manufacturing 1,065
Westinghouse Electric Corp Electrical Equipment and Component 1,035
Phillips Petroleum Co. Petroleum and Coal Products 990
American Cyanamid Co Chemical Manufacturing 976
Bell Telephone Company Telecommunications 971
Boeing Company Aerospace Product and Parts 948
Radio Corporation of America Broadcasting and Communications 928
Gulf Oil Corp Petroleum and Coal Products 857
Chevron Corporation Petroleum and Coal Products 847
Hercules Inc Chemical Manufacturing 840
3M Company Miscellaneous Manufacturing 705
Battelle Memorial Institute Research and Development Services 692
McDonnell Douglas Aircraft Aerospace Product and Parts 688
Standard Oil Co Petroleum and Coal Products 688
Pan American World Airways Air Transportation 673
Sperry Rand Corp Computer and Electronic Product 671

Notes: This table shows the top employers of the scientists and engineers in my sample.
I standardize and consolidate information on mergers and acquisitions (M&As) by
aligning historical corporate entities with their post-merger counterparts. Firms that
merged before 1972, such as North American Rockwell Corporation (1967) and McDon-
nell Douglas Aircraft Corporation (1967), were identified and recorded to maintain
historical accuracy. Similarly, post-1972 M&As, including LockheedMartin Corporation
(1995) and Northrop Grumman Corporation (1994), were documented by tracing their
predecessor firms.
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Table A6: First Specialty of Work

Specialty Count
Organic Chemistry 47,178
Agricultural and Biological Sciences 36,514
Geology 23,054
Analytical Chemistry 18,728
Physical Chemistry 16,581
Related Chemical Specialties 13,842
Theory and Practice of Computation 13,733
Clinical Psychology 11,740
Biochemistry 11,288
Inorganic Chemistry 8,661
Chemistry 7,751
Probability and Statistics 6,857
Chemical Engineering 6,828
Solid State Physics 6,556
Nuclear Physics 5,350
Forestry 4,862
Optics 4,836
Civil Engineering 4,822
Mathematics of Resource Use 4,801
Electronics 4,580

Notes: This table reports the work specialties of the scientists and engineers in
my sample. The data comes from both NRSTP and AMS. The NRSTP data origi-
nates from the “Professional Characteristics" section of the questionnaire, where
respondents were asked to identify the specialties in which they believed they had
demonstrated professional competence in research. While the classification of work
specialties aligns with the categorization of academic majors, it provides a more de-
tailed structure, incorporating multiple hierarchical levels of specialties for greater
granularity. The AMS data comes from the list of academic disciplines provided by
AMS.
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Table A7: Correlation Matrix

StartBusiness FilePatent HasPublication Tangible Score Intangible Score Gross Income isMale
StartBusiness 1.000
FilePatent 0.048 1.000
HasPublication 0.019 -0.017 1.000
Tangible Score 0.004 0.075 -0.076 1.000
Intangible Score 0.018 -0.123 -0.027 0.361 1.000
Gross Income 0.058 0.165 0.099 -0.037 -0.012 1.000
isMale 0.032 0.079 0.006 0.114 0.005 0.143 1.000

Notes: This table presents the correlation matrix between key variables in Table 1 and gender information. All variables are at
the individual level. StartBusiness equals one if a scientist started at least one firm. FilePatent equals one if a scientist filed at
least one patent. HasPublication equals one if a scientist published at least one journal article. Intangible Score and Tangible
Score are calculated based on the textual similarity between the work specialty of the scientists and the tangible and intangible
dictionaries. Gross income is self-reported in the NRSTP. Gender is either self-reported or guessed based on the first name.76



Table A8: Dictionary of Tangible and Intangible Specialties with GPT o3

Tangible Specialties Intangible Specialties
Mechanical Engineering Business Finance and Administration
Electrical Engineering Industrial Organization
Industrial Engineering Economic Systems
Chemical Engineering Theory and Practice of Computation
Materials Engineering Business Data Processing
Metallurgical Engineering Computer Science
Civil Engineering Information Science
Aerospace Engineering Patent Law
Mining and Petroleum Engineering International Law
Food Science and Technology International Economics
Forest Products Project Management and Control
Food Packaging Industrial and Personnel Psychology
Agricultural Engineering Social Change and Development
Electronic Engineering Economic Growth and Development
Environmental Engineering General Economics
Process Engineering Operations Research
Product Engineering Systems Engineering
Industrial Hygiene Demography and Population
Sanitary Engineering Computer Hardware Design
Communications Engineering Communications

Notes: The table reports the specialty dictionaries constructed using GPT o3 based
on company descriptions from COMPUSTAT. Firms are double-sorted by their share
of intangible assets and the capital expenditure-to-assets ratio. The top 100 firms at
each extreme are used to generate the tangible and intangible dictionaries. Some
specialty names are abbreviated for formatting purposes.
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Table A9: Dictionary of Tangible and Intangible Specialties with GPT o4-mini

Tangible Specialties Intangible Specialties
Mechanical Engineering Communications Engineering
Electrical Engineering Research Administration
Chemical Engineering Information Science
Civil Engineering Information System Design
Industrial Engineering Information Retrieval
Materials Engineering Computer Science
Metallurgical Engineering Computer Hardware Design
Polymer Science Business Organization
Ceramics Management
Geology Project Management and Control
Geophysics Business Data Processing
Petroleum Engineering Theory and Practice of Computation
Food Science and Technology Probability and Statistics
Biomedical Engineering Land Economics
Electronics International Economics
Solid State Physics Labor Economics
Electricity and Magnetism Economic Growth and Development
Engineering Mechanics Welfare Programs
Design Engineering Hospital Administration
Environmental Engineering Industrial Organization

Notes: The table reports the specialty dictionaries constructed using GPT o4-mini
based on company descriptions from COMPUSTAT. Firms are double-sorted by their
share of intangible assets and the capital expenditure-to-assets ratio. The top 100
firms at each extreme are used to generate the tangible and intangible dictionaries.
Some specialty names are abbreviated for formatting purposes.
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Table A10: Scientists’ Work Specialty Tangibility Status (1962 vs. 1968)

Intangible in 1968
Intangible in 1962 0 1
0 7,709 138
1 1,050 6,034

Notes: This table presents the confusion matrix comparing the work specialties of
the same scientists who appear in both the 1962 NRSTP survey and the 1968 survey.
Scientists may change their work specialty over time, but the tangibility of each
work specialty is time-invariant. The values represent the counts of observations
transitioning between categories. Scientists whose work specialty changed from 1 to
"not able to define" were dropped.
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Table A11: Differences between Tangible and Intangible Scientists

Variable Tangible Intangible Diff in Mean t-statistic
Female 0.146 0.064 0.082 66.703
Year of Highest Degree 1955.837 1952.907 2.930 67.858
Basic Salary 13037.608 12925.898 111.710 4.042
Gross Income 13959.789 13264.311 695.478 20.432
Govt. Agriculture 0.022 0.068 -0.047 -58.263
Govt. Atomic Energy 0.019 0.028 -0.009 -14.724
Govt. Defense 0.116 0.072 0.044 37.414
Govt. Education 0.096 0.040 0.057 55.596
Govt. Natural Resources 0.011 0.038 -0.026 -43.588
Govt. Space 0.047 0.033 0.014 17.750
EmployerFirm 0.232 0.482 -0.250 -136.527
EmployerGov 0.057 0.039 0.018 20.633
EmployerMil 0.014 0.015 -0.001 -1.526
EmployerUni 0.417 0.196 0.221 122.622

Notes: The table reports the average differences between scientists with tangible
and intangible specialties. Basic Salary and Gross Income are self-reported in
the NRSTP. Govt. Agriculture indicates sponsorship by government agriculture
programs, with similar definitions for Govt. Atomic Energy, Govt. Defense,
Govt. Education, Govt. Natural Resources, and Govt. Space. EmployerFirm
refers to scientists employed by private industry or business. EmployerGov
denotes federal government civilian employees. EmployerMil representsmilitary
service personnel, and EmployerUni includes those in active duty at colleges or
universities.
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Table A12: Employers with the Top Shares of Scientists with Intangible and
Tangible Work Specialties

Intangible Specialties Tangible Specialties
Informatics Inc Climax Molybdenum Co
Wyatt Co Fritzsche Brothers Inc
Applied Data Research Inc Detrex Chemical Industries Inc
Brookings Inst Dexter Corp
Milliman & Robertson Inc Sonoco Products Co
Computer Assoc Inc Richardson Co
Scientific Data Systems Schenectady Chem Inc
Computer Control Co Drew Chemical Corp
Philip Hankins & Co Inc Homestake Mining Co
Computing & Software Inc Cosden Oil & Chem Co
Arthur Andersen & Co Pennzoil Co
American Inst for Research Ashland Oil
Touche Ross Bailey & Smart Congoleum Nairn Inc
Data Dynamics, Inc. Devoe & Raynolds Co Inc
Pacific Mutual Life Insurance Co Travenol Labs Inc
Humrro Westreco Inc
Austen Riggs Center Fiberite Corp
Computer Usage Co Neville Chem Co
Keystone Computer Assoc Inc Holston Defense Corp
California Computer Products H Kohnstamm & Co Inc

Notes: The table reports employers with the highest share of scientists specializing
in either tangible or intangible fields. The share is calculated as the proportion of
scientists with a tangible specialty relative to the total number of scientists. Employ-
ers are identified based on the workplace reported by scientists when completing
the NRSTP or AMS survey.
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Table A13: Top Frequent Words in the Business Names of Startups by Intangible
and Tangible Scientists

Intangible Specialties Tangible Specialties
music oil
support laboratories
data petroleum
design electric
foods gas
rentals furniture
steel temple
knolls scientific
communication estate
planning engineers
video security

Notes: This table reports the most frequent words appearing in the business names
of firms founded by intangible and tangible scientists, respectively. All company
names are converted to lowercase, and common terms such as company, limited,
etc., are excluded.
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Table A14: Robustness Check: Effect of VC on Scientists’ Entry with Logit and Poisson Models

Dependent Variable: StartBusinesst | NoBusinesst−1 BusinessCountt | NoBusinesst−1
Model: Logit Poisson

(1) (2) (3) (4)
Post1979 × Intangible 0.1162∗∗ 0.1206∗∗ 0.1246∗ 0.1448∗∗

(0.0588) (0.0598) (0.0658) (0.0659)
Intangible 0.1931∗∗∗ 0.2540∗∗∗ 0.1697∗∗∗ 0.2268∗∗∗

(0.0466) (0.0483) (0.0518) (0.0547)
Post1979 0.5934∗∗∗ 0.6270∗∗∗

(0.0421) (0.0499)
Constant -7.203∗∗∗ -7.161∗∗∗

(0.0330) (0.0398)

Controls Yes Yes
Year FE Yes Yes
Observations 4,250,561 4,135,663 4,250,561 4,135,663
Pseudo R2 0.00786 0.01392 0.00848 0.01482

Notes: This table reports the difference-in-differences estimates of the ERISA effect on business
formation by scientists from 1970 to 1986. The dependent variable for Columns (1) and (2)
is a binary indicator of whether a scientist started a business in a given year. The dependent
variable for Columns (3) and (4) is the number of businesses started by a scientist in a given
year. Intangible is a binary variable indicating whether the scientist’s work specialty is classified
as intangible based on the LLM classification. Post1979 equals one for years after 1978. Control
variables include indicators for the highest degree attained, gender, and birth cohort. Standard
errors are clustered at the individual level. All specifications include year fixed effects. Standard
errors are clustered at the individual level. * p < .10, ** p < .05, *** p < .01.
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Table A15: Robustness Check: Effect of VC on Scientists’ Entry with Other Controls

Dependent Variable: 100 · 1 [StartBusinesst | NoBusinesst−1]
(1) (2) (3) (4)

Post1979 × Intangible 0.0292∗∗∗ 0.0383∗∗∗ 0.0292∗∗∗ 0.0195∗∗
(0.0074) (0.0074) (0.0074) (0.0079)

VC Deals 0.0025∗∗∗ 0.0037∗∗∗ 0.0018∗∗∗
(0.0005) (0.0005) (0.0005)

Bank Branches 0.0091∗∗∗ 0.0059∗∗∗
(0.0003) (0.0003)

Population 0.9939∗∗∗ 0.6061∗∗∗
(0.0386) (0.0323)

Year FE Yes Yes Yes
Individual FE Yes Yes Yes Yes
County-Year FE Yes
Observations 4,232,643 4,237,703 4,220,249 4,250,561
R2 0.15547 0.15464 0.15564 0.15988

Notes: This table reports the difference-in-differences estimates of the ERISA effect on
business formation by scientists from 1970 to 1986. The dependent variable is a binary
indicator of whether a scientist started a business in a given year. VC Deals refers to the
number of VC deals in the county-year. Bank Branches refers to the number of active
bank branches in the county-year, based on FDIC data. Population is the total population
in millions of the county-year. Standard errors are clustered at the individual level. * p
< .10, ** p < .05, *** p < .01.
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Table A16: Robustness Check: Counties and VC Presence

Dependent Variable: 100 · 1 [StartBusinesst | NoBusinesst−1]

Panel A: VC Counties
(1) (2) (3) (4)

Constant 0.0840∗∗∗ 0.0840∗∗∗
(0.0030) (0.0030)

Post1979 0.0786∗∗∗ 0.0786∗∗∗
(0.0053) (0.0053)

Intangible 0.0168∗∗∗ 0.0168∗∗∗ 0.0168∗∗∗
(0.0046) (0.0046) (0.0046)

Post1979 × Intangible 0.0343∗∗∗ 0.0343∗∗∗ 0.0343∗∗∗ 0.0687∗∗∗
(0.0083) (0.0083) (0.0083) (0.0091)

Control Yes Yes Yes
Year FE Yes Yes
Individual FE Yes
Observations 183,092 183,092 183,092 183,092
R2 0.00145 0.00146 0.00175 0.14056

Panel B: Non VC Counties
(5) (6) (7) (8)

Constant 0.0426∗∗∗ 0.0426∗∗∗
(0.0039) (0.0039)

Post1979 -0.0004 -0.0004
(0.0056) (0.0056)

Intangible 0.0012 0.0012 0.0012
(0.0062) (0.0062) (0.0062)

Post1979 × Intangible 0.0073 0.0073 0.0073 0.0114
(0.0092) (0.0092) (0.0092) (0.0092)

Control Yes Yes Yes
Year FE Yes Yes
Individual FE Yes
Observations 1,379,975 1,379,975 1,379,975 1,379,975
R2 0.00013 0.00015 0.00019 0.15466

Notes: This table reports the difference-in-differences estimates of the ERISA effect on
business formation by private-sector scientists from 1970 to 1986. The dependent variable
is a binary indicator of whether a scientist started a business in a given year. Intangible
is a binary variable indicating whether the scientist’s work specialty is classified as
intangible based on the LLM classification. Post1979 equals one for years after 1978.
Panel A includes scientists living in counties with a VC presence, and Panel B includes
scientists living in counties without a VC presence. VC presence is calculated as whether
the county had any early-stage VC deals during the sample period. All specifications
include individual fixed effects and year fixed effects. Standard errors are clustered at
the individual level. * p < .10, ** p < .05, *** p < .01.
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Table A17: Robustness Check: Continuous Intangibility Scores

Dependent Variable: 100 · 1 [StartBusinesst | NoBusinesst−1]
(1) (2) (3) (4)

Post1979 × IntangibleScore 0.3903∗∗∗ 0.2955∗∗∗ 0.2950∗∗∗ 0.6010∗∗∗
(0.0689) (0.0689) (0.0689) (0.0742)

Post1979 × TangibleScore -0.0595 0.0009 0.0012 -0.0371
(0.0536) (0.0536) (0.0536) (0.0582)

IntangibleScore 0.1476∗∗∗ 0.1363∗∗∗ 0.1363∗∗∗
(0.0383) (0.0383) (0.0384)

TangibleScore -0.0244 -0.0167 -0.0167
(0.0300) (0.0299) (0.0300)

Post1979 -0.1845∗∗∗ -0.1832∗∗∗
(0.0558) (0.0558)

Constant -0.0136 -0.0138
(0.0313) (0.0313)

Control Yes Yes Yes
Year FE Yes Yes
Individual FE Yes
Observations 7,688,461 7,688,461 7,688,461 7,688,461
R2 0.00014 0.00041 0.00043 0.15309

Notes: This table reports the difference-in-differences estimates of the ERISA effect on
business formation by scientists from 1970 to 1986. The dependent variable is a binary
indicator of whether a scientist started a business in a given year. TangibleScore is a
continuous variable indicating the cosine similarity between the work specialty of the
scientist and the tangible specialty dictionary based on SciBERT embedding. Intangible-
Score is a continuous variable indicating the cosine similarity between the work specialty
of the scientist and the intangible specialty dictionary based on SciBERT embedding.
Post1979 equals one for years after 1978. All specifications include individual fixed
effects and year fixed effects. Standard errors are clustered at the individual level. * p <
.10, ** p < .05, *** p < .01.
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Table A18: Robustness Check: Removing Information Technology Related Scientists

Dependent Variable: 100 · 1 [StartBusinesst | NoBusinesst−1]
(1) (2) (3) (4)

Constant 0.0744∗∗∗ 0.0720∗∗∗
(0.0025) (0.0025)

Post1979 0.0602∗∗∗ 0.0396∗∗∗
(0.0043) (0.0042)

Intangible 0.0109∗∗∗ 0.0099∗∗ 0.0099∗∗
(0.0039) (0.0039) (0.0039)

Post1979 × Intangible 0.0218∗∗∗ 0.0138∗∗ 0.0137∗ 0.0350∗∗∗
(0.0070) (0.0070) (0.0070) (0.0076)

Control Yes Yes Yes
Year FE Yes Yes
Individual FE Yes
Observations 4,001,066 4,001,066 4,001,066 4,001,066
R2 0.00012 0.00038 0.00040 0.15486

Notes: This table reports the difference-in-differences estimates of the ERISA effect on
business formation by scientists from 1970 to 1986 by excluding the scientists working
for Silicon Valley-related specialties (i.e., computer science, theory and practice of
computation, computer non-numerical processing, and computer hardware design).
The dependent variable is a binary indicator of whether a scientist started a business
in a given year. Intangible is a binary variable indicating whether the scientist’s work
specialty is classified as intangible based on the LLM classification. Post1979 equals one
for years after 1978. All specifications include individual fixed effects and year fixed
effects. Standard errors are clustered at the individual level. * p < .10, ** p < .05, *** p <
.01.
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Table A19: Robustness Check: Comparing California and Non-California Scientists

Dependent Variable: 100 · 1 [StartBusinesst | NoBusinesst−1]

Panel A: California Scientists
(1) (2) (3) (4)

Constant 0.2441∗∗∗ 0.2456∗∗∗
(0.0218) (0.0218)

Post1979 0.3297∗∗∗ 0.3449∗∗∗
(0.0420) (0.0436)

Intangible 0.0175 0.0181 0.0186
(0.0320) (0.0320) (0.0320)

Post1979 × Intangible 0.3055∗∗∗ 0.3110∗∗∗ 0.3154∗∗∗ 0.4255∗∗∗
(0.0672) (0.0678) (0.0679) (0.0775)

Control Yes Yes Yes
Year FE Yes Yes
Individual FE Yes
Observations 183,092 183,092 183,092 183,092
R2 0.00145 0.00146 0.00175 0.14056

Panel B: Non-California Scientists
(5) (6) (7) (8)

Constant 0.0582∗∗∗ 0.0575∗∗∗
(0.0033) (0.0033)

Post1979 0.0406∗∗∗ 0.0352∗∗∗
(0.0056) (0.0055)

Intangible 0.0356∗∗∗ 0.0348∗∗∗ 0.0349∗∗∗
(0.0078) (0.0078) (0.0078)

Post1979 × Intangible 0.0331∗∗ 0.0276∗∗ 0.0279∗∗ 0.0804∗∗∗
(0.0135) (0.0135) (0.0135) (0.0142)

Control Yes Yes Yes
Year FE Yes Yes
Individual FE Yes
Observations 1,379,975 1,379,975 1,379,975 1,379,975
R2 0.00013 0.00015 0.00019 0.15466

Notes: This table reports the difference-in-differences estimates of the ERISA effect on
business formation by private-sector scientists from 1970 to 1986. The dependent variable
is a binary indicator of whether a scientist started a business in a given year. Intangible
is a binary variable indicating whether the scientist’s work specialty is classified as
intangible based on the LLM classification. Post1979 equals one for years after 1978.
Panel A includes scientists living in California, and Panel B includes scientists living
outside of California. All specifications include individual fixed effects and year fixed
effects. Standard errors are clustered at the individual level. * p < .10, ** p < .05, *** p <
.01.
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Table A20: Robustness Check: Removing Delaware from the Sample

Dependent Variable: 100 · 1 [StartBusinesst | NoBusinesst−1]
(1) (2) (3) (4)

Constant 0.1033∗∗∗ -0.0403∗∗∗
(0.0034) (0.0052)

Post1979 0.1298∗∗∗ 0.1260∗∗∗
(0.0058) (0.0058)

Intangible 0.0270∗∗∗ -0.0110∗ -0.0109∗
(0.0056) (0.0057) (0.0057)

Post1979 × Intangible 0.0772∗∗∗ 0.0734∗∗∗ 0.0734∗∗∗ 0.0460∗∗∗
(0.0101) (0.0101) (0.0101) (0.0099)

Control Yes Yes Yes
Year FE Yes Yes
Individual FE Yes
Observations 4,154,409 4,125,331 4,125,331 4,125,331
R2 0.00042 0.00382 0.00388 0.13253

Notes: This table reports the difference-in-differences estimates of the ERISA effect on
business formation by scientists from 1970 to 1986 by excluding the scientists residing in
Delaware. The dependent variable is a binary indicator of whether a scientist started a
business in a given year. Intangible is a binary variable indicating whether the scientist’s
work specialty is classified as intangible based on the LLM classification. Post1979 equals
one for years after 1978. All specifications include individual fixed effects and year fixed
effects. Standard errors are clustered at the individual level. * p < .10, ** p < .05, *** p <
.01.
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Table A21: Equality of Coefficients: Effect of Patent and Publication Activity on Business Formation

Dependent Variable: 100 · 1 [StartBusinesst | NoBusinesst−1]
Model: (1) (2)

Private Industry University
Post1979 × Intangible 0.1929∗∗∗ 0.0088

(0.0172) (0.0132)
Post1979 × InventPre1979 0.0588∗∗∗ 0.2421∗∗∗

(0.0170) (0.0817)
Post1979 × PubPre1979 0.1213∗ 0.0395

(0.0673) (0.0278)
Post1979 × Intangible3 × InventPre1979 0.5974∗∗∗ 0.8929∗∗∗

(0.1147) (0.2262)
Post1979 × Intangible × PubPre1979 0.2046 0.0021

(0.1477) (0.0353)

Individual FE Yes Yes
Year FE Yes Yes
Observations 1,563,067 1,262,682
R2 0.14862 0.15070

Notes: This table reports the OLS estimates of the effect of publication and patent activity on business formation.
Intangible is a binary variable indicating whether the scientist’s work specialty is classified as intangible based on the
LLM classification. InventPre1979 equals one if the scientist is an inventor in a granted patent that was applied for before
1979. PubPre1979 equals one if the scientist published a journal article before 1979. Post1979 equals one for years after
1978. Standard errors are clustered at the individual level. * p < .10, ** p < .05, *** p < .01.
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Table A22: Heterogeneous Effect on Scientists with Propensity Score Matching

Dependent Variable: 100 · 1 [StartBusinesst | NoBusinesst−1]

Panel A: Scientists Working in Private Industry or Sector
(1) (2) (3) (4)

Has Patent No Patent Has
Publication

No
Publication

Post1979 × Intangible 0.8038∗∗∗ 0.2069∗∗∗ 0.4084∗∗∗ 0.0594
(0.1247) (0.0521) (0.1543) (0.1569)

Control Yes Yes Yes Yes
Individual FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Observations 246,917 229,757 26,256 28,067
R2 0.15291 0.16540 0.15231 0.29895

Panel B: Scientists Working for Colleges or Universities
(5) (6) (7) (8)

Has Patent No Patent Has
Publication

No
Publication

Post1979 × Intangible 0.9016∗∗∗ 0.0196 0.0145 -0.0299
(0.2426) (0.0957) (0.0349) (0.0405)

Control Yes Yes Yes Yes
Individual FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Observations 21,281 28,050 205,812 198,561
R2 0.15386 0.28011 0.15880 0.19900

Notes: This table reports the difference-in-differences estimates of the ERISA effect
on business formation by scientists from 1970 to 1986. Propensity score matching
was implemented between inventors and non-inventors, and between publishing and
non-publishing scientists, using nearest-neighbor matching (1:1 ratio) with covariates
including the level of highest degree, gender, year of birth, and gross income. The
dependent variable is a binary indicator of whether a scientist started a business in
a given year. Intangible is a binary variable indicating whether the scientist’s work
specialty is classified as intangible based on the LLM classification. Post1979 equals one
for years after 1978. All specifications include individual fixed effects and year fixed
effects. Standard errors are clustered at the individual level. * p < .10, ** p < .05, *** p <
.01.
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Table A23: Effect of VC on the Industry Growth Rate

Panel A: Employment

Dependent Variable: log(Employeet+1/Employeet)
(1) (2) (3) (4)

Full Sample VC County Non VC
County

Post1979 × Intangible 0.0158∗∗∗ 0.0172∗∗∗ 0.0140∗∗∗ 0.0183∗∗∗
(0.0017) (0.0017) (0.0030) (0.0021)

Industry FE Yes Yes Yes Yes
Year FE Yes
County FE Yes
Year-County FE Yes Yes Yes
Observations 376,524 376,524 83,873 292,651
R2 0.02893 0.12503 0.06549 0.14817

Panel B: Establishments

Dependent Variable: log(EstablishmentCountt+1/EstablishmentCountt)
(5) (6) (7) (8)

Full Sample VC County Non VC
County

Post1979 × Intangible 0.0090∗∗∗ 0.0095∗∗∗ 0.0101∗∗∗ 0.0094∗∗∗
(0.0009) (0.0009) (0.0017) (0.0010)

Industry FE Yes Yes Yes Yes
Year FE Yes
County FE Yes
Year-County FE Yes Yes Yes
Observations 840,011 840,011 123,347 716,664
R2 0.02065 0.05581 0.03964 0.06056

Notes: This table reports the difference-in-differences estimates of the ERISA effect on
the industry growth rate from 1974 to 1986. VC County represents a subsample with
counties that had at least one VC investment during 1979-1986. Non VC County is the
opposite. Number of Employees is the number of paid employees during the payroll
period. Establishments is the number of establishments with paid employees. Intangible
is a binary variable indicating whether the industry is classified as intangible. Post1979
equals one for years after 1978. Standard errors are clustered at the county level. * p <
.10, ** p < .05, *** p < .01.
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Table A24: Robustness Check: Intangible Capital and Fixed Asset Specificity

Panel A: Employment

Dependent Variable: Number of Employees
(1) (2) (3) (4)

Full Sample VC County Non VC
County

Post1979 × RecoveryPPE -2.074∗∗∗ -2.659∗∗∗ -17.47∗∗∗ -0.7790∗∗∗
(0.2177) (0.2634) (2.019) (0.0541)

Industry FE Yes Yes Yes Yes
Year FE Yes
County FE Yes
Year-County FE Yes Yes Yes
Observations 1,377,151 1,377,151 179,205 1,197,946
R2 0.38359 0.38797 0.42818 0.28559

Panel B: Establishments

Dependent Variable: All Sizes 1-4 Employees
(5) (6) (7) (8)

VC County Non VC
County

VC County Non VC
County

Post1979 × Intangible -0.5672∗∗∗ -0.0243∗∗∗ -0.0231 0.0132∗∗∗
(0.0621) (0.0027) (0.0251) (0.0014)

Industry FE Yes Yes Yes Yes
Year-County FE Yes Yes Yes Yes
Observations 179,205 1,377,151 179,205 1,197,946
R2 0.41794 0.41983 0.37614 0.39069

Notes: This table reports the difference-in-differences estimates of the ERISA effect on
industry size from 1974 to 1986. VC County represents a subsample with counties that
had at least one VC investment during 1979-1986. No VC County is the opposite. Number
of Employees is the number of paid employees during the payroll period. Establishments
is the number of establishments with paid employees, categorized by employment-size
class (e.g., 1–4 employees). RecoveryPPE is a continuous variable indicating the PPE
liquidation recovery rate at the SIC two-digit level (Kermani and Ma, 2023). Post1979
equals one for years after 1978. Standard errors are clustered at the county level. * p <
.10, ** p < .05, *** p < .01.
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